MethodBase Virtual base class for all TMVA method
virtual | ~MethodBase() |
void | TObject::AbstractMethod(const char* method) const |
void | TMVA::Configurable::AddOptionsXMLTo(void* parent) const |
void | AddOutput(TMVA::Types::ETreeType type, TMVA::Types::EAnalysisType analysisType) |
virtual void | TObject::AppendPad(Option_t* option = "") |
TDirectory* | BaseDir() const |
virtual void | TObject::Browse(TBrowser* b) |
void | TMVA::Configurable::CheckForUnusedOptions() const |
virtual void | CheckSetup() |
static TClass* | Class() |
virtual const char* | TObject::ClassName() const |
virtual void | TNamed::Clear(Option_t* option = "") |
virtual TObject* | TNamed::Clone(const char* newname = "") const |
virtual Int_t | TNamed::Compare(const TObject* obj) const |
TMVA::Configurable | TMVA::Configurable::Configurable(const TString& theOption = "") |
TMVA::Configurable | TMVA::Configurable::Configurable(const TMVA::Configurable&) |
virtual void | TNamed::Copy(TObject& named) const |
virtual const TMVA::Ranking* | CreateRanking() |
TMVA::DataSet* | Data() const |
TMVA::DataSetInfo& | DataInfo() const |
virtual void | DeclareCompatibilityOptions() |
virtual void | DeclareOptions() |
virtual void | TObject::Delete(Option_t* option = "")MENU |
void | DisableWriting(Bool_t setter) |
virtual Int_t | TObject::DistancetoPrimitive(Int_t px, Int_t py) |
Bool_t | DoMulticlass() const |
Bool_t | DoRegression() const |
virtual void | TObject::Draw(Option_t* option = "") |
virtual void | TObject::DrawClass() constMENU |
virtual TObject* | TObject::DrawClone(Option_t* option = "") constMENU |
virtual void | TObject::Dump() constMENU |
virtual void | TObject::Error(const char* method, const char* msgfmt) const |
virtual void | TObject::Execute(const char* method, const char* params, Int_t* error = 0) |
virtual void | TObject::Execute(TMethod* method, TObjArray* params, Int_t* error = 0) |
virtual void | TObject::ExecuteEvent(Int_t event, Int_t px, Int_t py) |
void | ExitFromTraining() |
virtual void | TObject::Fatal(const char* method, const char* msgfmt) const |
virtual void | TNamed::FillBuffer(char*& buffer) |
virtual TObject* | TObject::FindObject(const char* name) const |
virtual TObject* | TObject::FindObject(const TObject* obj) const |
TMVA::Types::EAnalysisType | GetAnalysisType() const |
const char* | TMVA::Configurable::GetConfigDescription() const |
const char* | TMVA::Configurable::GetConfigName() const |
UInt_t | GetCurrentIter() |
virtual Option_t* | TObject::GetDrawOption() const |
static Long_t | TObject::GetDtorOnly() |
virtual Double_t | GetEfficiency(const TString&, TMVA::Types::ETreeType, Double_t& err) |
const TMVA::Event* | GetEvent() const |
const TMVA::Event* | GetEvent(const TMVA::Event* ev) const |
const TMVA::Event* | GetEvent(Long64_t ievt) const |
const TMVA::Event* | GetEvent(Long64_t ievt, TMVA::Types::ETreeType type) const |
const vector<TMVA::Event*>& | GetEventCollection(TMVA::Types::ETreeType type) |
TFile* | GetFile() const |
virtual const char* | TObject::GetIconName() const |
const TString& | GetInputLabel(Int_t i) const |
const char* | GetInputTitle(Int_t i) const |
const TString& | GetInputVar(Int_t i) const |
TMultiGraph* | GetInteractiveTrainingError() |
const TString& | GetJobName() const |
virtual Double_t | GetKSTrainingVsTest(Char_t SorB, TString opt = "X") |
virtual Double_t | GetMaximumSignificance(Double_t SignalEvents, Double_t BackgroundEvents, Double_t& optimal_significance_value) const |
UInt_t | GetMaxIter() |
Double_t | GetMean(Int_t ivar) const |
const TString& | GetMethodName() const |
TMVA::Types::EMVA | GetMethodType() const |
TString | GetMethodTypeName() const |
virtual vector<Float_t> | GetMulticlassEfficiency(vector<vector<Float_t> >& purity) |
virtual vector<Float_t> | GetMulticlassTrainingEfficiency(vector<vector<Float_t> >& purity) |
virtual const vector<Float_t>& | GetMulticlassValues() |
virtual Double_t | GetMvaValue(Double_t* errLower = 0, Double_t* errUpper = 0) |
Double_t | GetMvaValue(const TMVA::Event*const ev, Double_t* err = 0, Double_t* errUpper = 0) |
virtual const char* | GetName() const |
UInt_t | GetNEvents() const |
UInt_t | GetNTargets() const |
UInt_t | GetNvar() const |
UInt_t | GetNVariables() const |
virtual char* | TObject::GetObjectInfo(Int_t px, Int_t py) const |
static Bool_t | TObject::GetObjectStat() |
virtual Option_t* | TObject::GetOption() const |
const TString& | TMVA::Configurable::GetOptions() const |
virtual Double_t | GetProba(const TMVA::Event* ev) |
virtual Double_t | GetProba(Double_t mvaVal, Double_t ap_sig) |
const TString | GetProbaName() const |
virtual Double_t | GetRarity(Double_t mvaVal, TMVA::Types::ESBType reftype = Types::kBackground) const |
virtual void | GetRegressionDeviation(UInt_t tgtNum, TMVA::Types::ETreeType type, Double_t& stddev, Double_t& stddev90Percent) const |
virtual const vector<Float_t>& | GetRegressionValues() |
const vector<Float_t>& | GetRegressionValues(const TMVA::Event*const ev) |
Double_t | GetRMS(Int_t ivar) const |
virtual Double_t | GetROCIntegral(TH1D* histS, TH1D* histB) const |
virtual Double_t | GetROCIntegral(TMVA::PDF* pdfS = 0, TMVA::PDF* pdfB = 0) const |
virtual Double_t | GetSeparation(TH1*, TH1*) const |
virtual Double_t | GetSeparation(TMVA::PDF* pdfS = 0, TMVA::PDF* pdfB = 0) const |
Double_t | GetSignalReferenceCut() const |
Double_t | GetSignalReferenceCutOrientation() const |
virtual Double_t | GetSignificance() const |
const TMVA::Event* | GetTestingEvent(Long64_t ievt) const |
Double_t | GetTestTime() const |
const TString& | GetTestvarName() const |
virtual const char* | TNamed::GetTitle() const |
virtual Double_t | GetTrainingEfficiency(const TString&) |
const TMVA::Event* | GetTrainingEvent(Long64_t ievt) const |
UInt_t | GetTrainingROOTVersionCode() const |
TString | GetTrainingROOTVersionString() const |
UInt_t | GetTrainingTMVAVersionCode() const |
TString | GetTrainingTMVAVersionString() const |
Double_t | GetTrainTime() const |
TMVA::TransformationHandler& | GetTransformationHandler(Bool_t takeReroutedIfAvailable = true) |
const TMVA::TransformationHandler& | GetTransformationHandler(Bool_t takeReroutedIfAvailable = true) const |
virtual UInt_t | TObject::GetUniqueID() const |
TString | GetWeightFileName() const |
Double_t | GetXmax(Int_t ivar) const |
Double_t | GetXmin(Int_t ivar) const |
virtual Bool_t | TObject::HandleTimer(TTimer* timer) |
virtual Bool_t | TMVA::IMethod::HasAnalysisType(TMVA::Types::EAnalysisType type, UInt_t numberClasses, UInt_t numberTargets) |
virtual ULong_t | TNamed::Hash() const |
Bool_t | HasMVAPdfs() const |
TMVA::IMethod | TMVA::IMethod::IMethod() |
TMVA::IMethod | TMVA::IMethod::IMethod(const TMVA::IMethod&) |
virtual void | TObject::Info(const char* method, const char* msgfmt) const |
virtual Bool_t | TObject::InheritsFrom(const char* classname) const |
virtual Bool_t | TObject::InheritsFrom(const TClass* cl) const |
virtual void | Init() |
void | InitIPythonInteractive() |
virtual void | TObject::Inspect() constMENU |
void | TObject::InvertBit(UInt_t f) |
virtual TClass* | IsA() const |
virtual Bool_t | TObject::IsEqual(const TObject* obj) const |
virtual Bool_t | TObject::IsFolder() const |
Bool_t | IsModelPersistence() |
Bool_t | TObject::IsOnHeap() const |
virtual Bool_t | IsSignalLike() |
virtual Bool_t | IsSignalLike(Double_t mvaVal) |
Bool_t | IsSilentFile() |
virtual Bool_t | TNamed::IsSortable() const |
Bool_t | TObject::IsZombie() const |
TMVA::MsgLogger& | TMVA::Configurable::Log() const |
virtual void | TNamed::ls(Option_t* option = "") const |
virtual void | MakeClass(const TString& classFileName = TString("")) const |
void | TObject::MayNotUse(const char* method) const |
TMVA::MethodBase | MethodBase(const TMVA::MethodBase&) |
TMVA::MethodBase | MethodBase(TMVA::Types::EMVA methodType, TMVA::DataSetInfo& dsi, const TString& weightFile) |
TMVA::MethodBase | MethodBase(const TString& jobName, TMVA::Types::EMVA methodType, const TString& methodTitle, TMVA::DataSetInfo& dsi, const TString& theOption = "") |
TDirectory* | MethodBaseDir() const |
virtual Bool_t | TObject::Notify() |
void | TObject::Obsolete(const char* method, const char* asOfVers, const char* removedFromVers) const |
void | TObject::operator delete(void* ptr) |
void | TObject::operator delete(void* ptr, void* vp) |
void | TObject::operator delete[](void* ptr) |
void | TObject::operator delete[](void* ptr, void* vp) |
void* | TObject::operator new(size_t sz) |
void* | TObject::operator new(size_t sz, void* vp) |
void* | TObject::operator new[](size_t sz) |
void* | TObject::operator new[](size_t sz, void* vp) |
TMVA::MethodBase& | operator=(const TMVA::MethodBase&) |
virtual map<TString,Double_t> | OptimizeTuningParameters(TString fomType = "ROCIntegral", TString fitType = "FitGA") |
virtual void | TObject::Paint(Option_t* option = "") |
virtual void | TMVA::Configurable::ParseOptions() |
virtual void | TObject::Pop() |
virtual void | TNamed::Print(Option_t* option = "") const |
virtual void | PrintHelpMessage() const |
void | TMVA::Configurable::PrintOptions() const |
virtual void | ProcessOptions() |
void | ProcessSetup() |
virtual Int_t | TObject::Read(const char* name) |
void | TMVA::Configurable::ReadOptionsFromStream(istream& istr) |
void | TMVA::Configurable::ReadOptionsFromXML(void* node) |
void | ReadStateFromFile() |
void | ReadStateFromStream(istream& tf) |
void | ReadStateFromStream(TFile& rf) |
void | ReadStateFromXMLString(const char* xmlstr) |
virtual void | TObject::RecursiveRemove(TObject* obj) |
void | RerouteTransformationHandler(TMVA::TransformationHandler* fTargetTransformation) |
virtual void | Reset() |
void | TObject::ResetBit(UInt_t f) |
virtual void | TObject::SaveAs(const char* filename = "", Option_t* option = "") constMENU |
virtual void | TObject::SavePrimitive(ostream& out, Option_t* option = "") |
virtual void | SetAnalysisType(TMVA::Types::EAnalysisType type) |
void | SetBaseDir(TDirectory* methodDir) |
void | TObject::SetBit(UInt_t f) |
void | TObject::SetBit(UInt_t f, Bool_t set) |
void | TMVA::Configurable::SetConfigDescription(const char* d) |
void | TMVA::Configurable::SetConfigName(const char* n) |
virtual void | TObject::SetDrawOption(Option_t* option = "")MENU |
static void | TObject::SetDtorOnly(void* obj) |
void | SetFile(TFile* file) |
void | SetMethodBaseDir(TDirectory* methodDir) |
void | SetMethodDir(TDirectory* methodDir) |
void | SetModelPersistence(Bool_t status) |
void | TMVA::Configurable::SetMsgType(TMVA::EMsgType t) |
virtual void | TNamed::SetName(const char* name)MENU |
virtual void | TNamed::SetNameTitle(const char* name, const char* title) |
static void | TObject::SetObjectStat(Bool_t stat) |
void | TMVA::Configurable::SetOptions(const TString& s) |
void | SetSignalReferenceCut(Double_t cut) |
void | SetSignalReferenceCutOrientation(Double_t cutOrientation) |
void | SetSilentFile(Bool_t status) |
void | SetTestTime(Double_t testTime) |
void | SetTestvarName(const TString& v = "") |
virtual void | TNamed::SetTitle(const char* title = "")MENU |
void | SetTrainTime(Double_t trainTime) |
virtual void | SetTuneParameters(map<TString,Double_t> tuneParameters) |
virtual void | TObject::SetUniqueID(UInt_t uid) |
void | SetupMethod() |
virtual void | ShowMembers(TMemberInspector& insp) const |
virtual Int_t | TNamed::Sizeof() const |
virtual void | Streamer(TBuffer&) |
void | StreamerNVirtual(TBuffer& ClassDef_StreamerNVirtual_b) |
virtual void | TObject::SysError(const char* method, const char* msgfmt) const |
Bool_t | TObject::TestBit(UInt_t f) const |
Int_t | TObject::TestBits(UInt_t f) const |
virtual void | TestClassification() |
virtual void | TestMulticlass() |
virtual void | TestRegression(Double_t& bias, Double_t& biasT, Double_t& dev, Double_t& devT, Double_t& rms, Double_t& rmsT, Double_t& mInf, Double_t& mInfT, Double_t& corr, TMVA::Types::ETreeType type) |
virtual void | Train() |
bool | TrainingEnded() |
void | TrainMethod() |
virtual void | TObject::UseCurrentStyle() |
virtual void | TObject::Warning(const char* method, const char* msgfmt) const |
virtual Int_t | TObject::Write(const char* name = 0, Int_t option = 0, Int_t bufsize = 0) |
virtual Int_t | TObject::Write(const char* name = 0, Int_t option = 0, Int_t bufsize = 0) const |
virtual void | WriteEvaluationHistosToFile(TMVA::Types::ETreeType treetype) |
virtual void | WriteMonitoringHistosToFile() const |
void | TMVA::Configurable::WriteOptionsToStream(ostream& o, const TString& prefix) const |
void | WriteStateToFile() const |
void | AddClassesXMLTo(void* parent) const |
virtual void | AddClassifierOutput(TMVA::Types::ETreeType type) |
virtual void | AddClassifierOutputProb(TMVA::Types::ETreeType type) |
void | AddInfoItem(void* gi, const TString& name, const TString& value) const |
virtual void | AddMulticlassOutput(TMVA::Types::ETreeType type) |
virtual void | AddRegressionOutput(TMVA::Types::ETreeType type) |
void | AddSpectatorsXMLTo(void* parent) const |
void | AddTargetsXMLTo(void* parent) const |
void | AddVarsXMLTo(void* parent) const |
void | CreateMVAPdfs() |
void | DeclareBaseOptions() |
TMVA::MethodBase::ECutOrientation | GetCutOrientation() const |
Bool_t | GetLine(istream& fin, char* buf) |
virtual Double_t | GetValueForRoot(Double_t) |
void | InitBase() |
void | ProcessBaseOptions() |
void | ReadClassesFromXML(void* clsnode) |
void | ReadSpectatorsFromXML(void* specnode) |
void | ReadStateFromXML(void* parent) |
void | ReadTargetsFromXML(void* tarnode) |
void | ReadVariablesFromXML(void* varnode) |
void | ReadVarsFromStream(istream& istr) |
void | ResetThisBase() |
void | WriteStateToStream(ostream& tf) const |
void | WriteStateToXML(void* parent) const |
void | WriteVarsToStream(ostream& tf, const TString& prefix = "") const |
Bool_t | fSetupCompleted | is method setup |
const TMVA::Event* | fTmpEvent | ! temporary event when testing on a different DataSet than the own one |
static TObject::(anonymous) | TObject::kBitMask | |
static TObject::EStatusBits | TObject::kCanDelete | |
static TObject::EStatusBits | TObject::kCannotPick | |
static TObject::EStatusBits | TObject::kHasUUID | |
static TObject::EStatusBits | TObject::kInvalidObject | |
static TObject::(anonymous) | TObject::kIsOnHeap | |
static TObject::EStatusBits | TObject::kIsReferenced | |
static TObject::EStatusBits | TObject::kMustCleanup | |
static TObject::EStatusBits | TObject::kNoContextMenu | |
static TObject::(anonymous) | TObject::kNotDeleted | |
static TObject::EStatusBits | TObject::kObjInCanvas | |
static TObject::(anonymous) | TObject::kOverwrite | |
static TMVA::MethodBase::EWeightFileType | kROOT | |
static TObject::(anonymous) | TObject::kSingleKey | |
static TMVA::MethodBase::EWeightFileType | kTEXT | |
static TObject::(anonymous) | TObject::kWriteDelete | |
static TObject::(anonymous) | TObject::kZombie |
TMVA::Types::EAnalysisType | fAnalysisType | method-mode : true --> regression, false --> classification |
UInt_t | fBackgroundClass | index of the Background-class |
bool | fExitFromTraining | |
UInt_t | fIPyCurrentIter | |
UInt_t | fIPyMaxIter | |
vector<TString>* | fInputVars | vector of input variables used in MVA |
TMVA::IPythonInteractive* | fInteractive | |
TMVA::MsgLogger* | TMVA::Configurable::fLogger | ! message logger |
vector<Float_t>* | fMulticlassReturnVal | holds the return-values for the multiclass classification |
TString | TNamed::fName | object identifier |
Int_t | fNbins | number of bins in input variable histograms |
Int_t | fNbinsH | number of bins in evaluation histograms |
Int_t | fNbinsMVAoutput | number of bins in MVA output histograms |
TMVA::Ranking* | fRanking | pointer to ranking object (created by derived classifiers) |
vector<Float_t>* | fRegressionReturnVal | holds the return-values for the regression |
TMVA::Results* | fResults | |
UInt_t | fSignalClass | index of the Signal-class |
TString | TNamed::fTitle | object title |
TDirectory* | fBaseDir | base directory for the instance, needed to know where to jump back from localDir |
Bool_t | fConstructedFromWeightFile | is it obtained from weight file? |
TMVA::MethodBase::ECutOrientation | fCutOrientation | +1 if Sig>Bkg, -1 otherwise |
TMVA::DataSetInfo& | fDataSetInfo | ! the data set information (sometimes needed) |
TMVA::PDF* | fDefaultPDF | default PDF definitions |
TH1* | fEffS | efficiency histogram for rootfinder |
vector<const vector<TMVA::Event*>*> | fEventCollections | if the method needs the complete event-collection, the transformed event coll. ist stored here. |
TFile* | fFile | |
TString | fFileDir | unix sub-directory for weight files (default: DataLoader's Name + "weights") |
Bool_t | fHasMVAPdfs | MVA Pdfs are created for this classifier |
Bool_t | fHelp | help flag |
Bool_t | fIgnoreNegWeightsInTraining | If true, events with negative weights are not used in training |
TString | fJobName | name of job -> user defined, appears in weight files |
TMVA::PDF* | fMVAPdfB | background MVA PDF |
TMVA::PDF* | fMVAPdfS | signal MVA PDF |
Double_t | fMeanB | mean (background) |
Double_t | fMeanS | mean (signal) |
TDirectory* | fMethodBaseDir | base directory for the method |
TString | fMethodName | name of the method (set in derived class) |
TMVA::Types::EMVA | fMethodType | type of method (set in derived class) |
Bool_t | fModelPersistence | |
Int_t | fNbinsMVAPdf | number of bins used in histogram that creates PDF |
Bool_t | fNormalise | normalise input variables |
Int_t | fNsmoothMVAPdf | number of times a histogram is smoothed before creating the PDF |
TString | fParentDir | method parent name, like booster name |
UInt_t | fROOTTrainingVersion | ROOT version used for training |
Double_t | fRmsB | RMS (background) |
Double_t | fRmsS | RMS (signal) |
Double_t | fSignalReferenceCut | minimum requirement on the MVA output to declare an event signal-like |
Double_t | fSignalReferenceCutOrientation | minimum requirement on the MVA output to declare an event signal-like |
Bool_t | fSilentFile | |
TMVA::PDF* | fSplB | PDFs of MVA distribution (background) |
TMVA::TSpline1* | fSplRefB | helper splines for RootFinder (background) |
TMVA::TSpline1* | fSplRefS | helper splines for RootFinder (signal) |
TMVA::PDF* | fSplS | PDFs of MVA distribution (signal) |
TMVA::PDF* | fSplTrainB | PDFs of training MVA distribution (background) |
TSpline* | fSplTrainEffBvsS | splines for training signal eff. versus background eff. |
TMVA::TSpline1* | fSplTrainRefB | helper splines for RootFinder (background) |
TMVA::TSpline1* | fSplTrainRefS | helper splines for RootFinder (signal) |
TMVA::PDF* | fSplTrainS | PDFs of training MVA distribution (signal) |
TSpline* | fSpleffBvsS | splines for signal eff. versus background eff. |
UInt_t | fTMVATrainingVersion | TMVA version used for training |
Double_t | fTestTime | for timing measurements |
TString | fTestvar | variable used in evaluation, etc (mostly the MVA) |
Double_t | fTrainTime | for timing measurements |
TMVA::TransformationHandler | fTransformation | the list of transformations |
TMVA::TransformationHandler* | fTransformationPointer | pointer to the rest of transformations |
Bool_t | fTxtWeightsOnly | if TRUE, write weights only to text files |
Bool_t | fUseDecorr | synonymous for decorrelation |
TString | fVarTransformString | labels variable transform method |
TMVA::Types::ESBType | fVariableTransformType | this is the event type (sig or bgd) assumed for variable transform |
TString | fVariableTransformTypeString | labels variable transform type |
Bool_t | fVerbose | verbose flag |
TMVA::EMsgType | fVerbosityLevel | verbosity level |
TString | fVerbosityLevelString | verbosity level (user input string) |
TString | fWeightFile | weight file name |
Double_t | fXmax | maximum (signal and background) |
Double_t | fXmin | minimum (signal and background) |
static TMVA::MethodBase::ECutOrientation | kNegative | |
static TMVA::MethodBase::ECutOrientation | kPositive |
default constructur
constructor used for Testing + Application of the MVA, only (no training), using given weight file default destructur
---------- main training and testing methods ------------------------------ prepare tree branch with the method's discriminating variable
performs classifier training calls methods Train() implemented by derived classes
optimize tuning parameters
store and retrieve time used for training
{ fTrainTime = trainTime; }
store and retrieve time used for testing
{ fTestTime = testTime; }
performs regression testing
reset the Method --> As if it was not yet trained, just instantiated virtual void Reset() = 0; for the moment, I provide a dummy (that would not work) default, just to make compilation/running w/o parameter optimisation still possible
{return;}
classifier response: some methods may return a per-event error estimate error calculation is skipped if err==0
signal/background classification response
signal/background classification response for all current set of data
probability of classifier response (mvaval) to be signal (requires "CreateMvaPdf" option set)
Rarity of classifier response (signal or background (default) is uniform in [0,1])
streamer methods for training information (creates "weight" files) --------
write evaluation histograms into target file
write classifier-specific monitoring information to target file
---------- public evaluation methods -------------------------------------- individual initialistion for testing of each method overload this one for individual initialisation of the testing, it is then called automatically within the global "TestInit" variables (and private menber functions) for the Evaluation: get the effiency. It fills a histogram for efficiency/vs/bkg and returns the one value fo the efficiency demanded for in the TString argument. (Watch the string format)
---------- public accessors -----------------------------------------------
classifier naming (a lot of names ... aren't they ;-)
{ return fJobName; }
build classifier name in Test tree
MVA prefix (e.g., "TMVA_")
{ fTestvar = (v=="") ? ("MVA_" + GetMethodName()) : v; }
number of input variable used by classifier
{ return DataInfo().GetNVariables(); }
internal names and expressions of input variables
{ return DataInfo().GetVariableInfo(i).GetInternalName(); }
normalisation and limit accessors
{ return GetTransformationHandler().GetMean(ivar); }
sets the minimum requirement on the MVA output to declare an event signal-like
{ return fSignalReferenceCut; }
sets the minimum requirement on the MVA output to declare an event signal-like
{ fSignalReferenceCut = cut; }
{ fSignalReferenceCutOrientation = cutOrientation; }
the TMVA version can be obtained and checked using if (GetTrainingTMVAVersionCode()>TMVA_VERSION(3,7,2)) {...} or if (GetTrainingROOTVersionCode()>ROOT_VERSION(5,15,5)) {...}
{ return fTMVATrainingVersion; }
{ fTransformationPointer=fTargetTransformation; }
event reference and update NOTE: these Event accessors make sure that you get the events transformed according to the particular clasifiers transformation chosen
{ return Data()->GetNEvents(); }
---------- public auxiliary methods ---------------------------------------
this method is used to decide whether an event is signal- or background-like
the reference cut "xC" is taken to be where
Int_[-oo,xC] { PDF_S(x) dx } = Int_[xC,+oo] { PDF_B(x) dx }
setter method for suppressing writing to XML and writing of standalone classes
{ fModelPersistence = setter?kFALSE:kTRUE; }
get training errors (for JsMVA only)
{return fInteractive->Get();}
---------- protected acccessors ------------------------------------------- TDirectory* LocalTDir() const { return Data().LocalRootDir(); } weight file name and directory (given by global config variable)
set number of input variables (only used by MethodCuts, could perhaps be removed) void SetNvar( Int_t n ) { fNvar = n; } verbose and help flags
{ return fVerbose; }
---------- protected event and tree accessors ----------------------------- names of input variables (if the original names are expressions, they are transformed into regexps)
{ return (*fInputVars)[ivar]; }
{ return DataInfo().GetVariableInfo(ivar).GetExpression(); }
---------- protected auxiliary methods ------------------------------------ make ROOT-independent C++ class for classifier response (classifier-specific implementation)
{}
static pointer to this object - required for ROOT finder (to be solved differently)(solved by Omar) static MethodBase* GetThisBase(); some basic statistical analysis
{ return kTRUE; }
if TRUE, write weights only to text files access to event information that needs method-specific information
{ return fConstructedFromWeightFile; }
---------- private definitions -------------------------------------------- Initialisation
---------- private acccessors --------------------------------------------- reset required for RootFinder
---------- private auxiliary methods -------------------------------------- PDFs for classifier response (required to compute signal probability and Rarity)
fill test tree with classification or regression results
========== class members ================================================== direct accessors