A++ » TMVA » TMVA::MethodBase

class TMVA::MethodBase: public TMVA::IMethod, public TMVA::Configurable


MethodBase

Virtual base class for all TMVA method


Function Members (Methods)

 
    This is an abstract class, constructors will not be documented.
    Look at the header to check for available constructors.

public:
virtual~MethodBase()
voidTObject::AbstractMethod(const char* method) const
voidTMVA::Configurable::AddOptionsXMLTo(void* parent) const
voidAddOutput(TMVA::Types::ETreeType type, TMVA::Types::EAnalysisType analysisType)
virtual voidTObject::AppendPad(Option_t* option = "")
TDirectory*BaseDir() const
virtual voidTObject::Browse(TBrowser* b)
voidTMVA::Configurable::CheckForUnusedOptions() const
virtual voidCheckSetup()
static TClass*Class()
virtual const char*TObject::ClassName() const
virtual voidTNamed::Clear(Option_t* option = "")
virtual TObject*TNamed::Clone(const char* newname = "") const
virtual Int_tTNamed::Compare(const TObject* obj) const
TMVA::ConfigurableTMVA::Configurable::Configurable(const TString& theOption = "")
TMVA::ConfigurableTMVA::Configurable::Configurable(const TMVA::Configurable&)
virtual voidTNamed::Copy(TObject& named) const
virtual const TMVA::Ranking*CreateRanking()
TMVA::DataSet*Data() const
TMVA::DataSetInfo&DataInfo() const
virtual voidDeclareCompatibilityOptions()
virtual voidDeclareOptions()
virtual voidTObject::Delete(Option_t* option = "")MENU
voidDisableWriting(Bool_t setter)
virtual Int_tTObject::DistancetoPrimitive(Int_t px, Int_t py)
Bool_tDoMulticlass() const
Bool_tDoRegression() const
virtual voidTObject::Draw(Option_t* option = "")
virtual voidTObject::DrawClass() constMENU
virtual TObject*TObject::DrawClone(Option_t* option = "") constMENU
virtual voidTObject::Dump() constMENU
virtual voidTObject::Error(const char* method, const char* msgfmt) const
virtual voidTObject::Execute(const char* method, const char* params, Int_t* error = 0)
virtual voidTObject::Execute(TMethod* method, TObjArray* params, Int_t* error = 0)
virtual voidTObject::ExecuteEvent(Int_t event, Int_t px, Int_t py)
voidExitFromTraining()
virtual voidTObject::Fatal(const char* method, const char* msgfmt) const
virtual voidTNamed::FillBuffer(char*& buffer)
virtual TObject*TObject::FindObject(const char* name) const
virtual TObject*TObject::FindObject(const TObject* obj) const
TMVA::Types::EAnalysisTypeGetAnalysisType() const
const char*TMVA::Configurable::GetConfigDescription() const
const char*TMVA::Configurable::GetConfigName() const
UInt_tGetCurrentIter()
virtual Option_t*TObject::GetDrawOption() const
static Long_tTObject::GetDtorOnly()
virtual Double_tGetEfficiency(const TString&, TMVA::Types::ETreeType, Double_t& err)
const TMVA::Event*GetEvent() const
const TMVA::Event*GetEvent(const TMVA::Event* ev) const
const TMVA::Event*GetEvent(Long64_t ievt) const
const TMVA::Event*GetEvent(Long64_t ievt, TMVA::Types::ETreeType type) const
const vector<TMVA::Event*>&GetEventCollection(TMVA::Types::ETreeType type)
TFile*GetFile() const
virtual const char*TObject::GetIconName() const
const TString&GetInputLabel(Int_t i) const
const char*GetInputTitle(Int_t i) const
const TString&GetInputVar(Int_t i) const
TMultiGraph*GetInteractiveTrainingError()
const TString&GetJobName() const
virtual Double_tGetKSTrainingVsTest(Char_t SorB, TString opt = "X")
virtual Double_tGetMaximumSignificance(Double_t SignalEvents, Double_t BackgroundEvents, Double_t& optimal_significance_value) const
UInt_tGetMaxIter()
Double_tGetMean(Int_t ivar) const
const TString&GetMethodName() const
TMVA::Types::EMVAGetMethodType() const
TStringGetMethodTypeName() const
virtual vector<Float_t>GetMulticlassEfficiency(vector<vector<Float_t> >& purity)
virtual vector<Float_t>GetMulticlassTrainingEfficiency(vector<vector<Float_t> >& purity)
virtual const vector<Float_t>&GetMulticlassValues()
virtual Double_tGetMvaValue(Double_t* errLower = 0, Double_t* errUpper = 0)
Double_tGetMvaValue(const TMVA::Event*const ev, Double_t* err = 0, Double_t* errUpper = 0)
virtual const char*GetName() const
UInt_tGetNEvents() const
UInt_tGetNTargets() const
UInt_tGetNvar() const
UInt_tGetNVariables() const
virtual char*TObject::GetObjectInfo(Int_t px, Int_t py) const
static Bool_tTObject::GetObjectStat()
virtual Option_t*TObject::GetOption() const
const TString&TMVA::Configurable::GetOptions() const
virtual Double_tGetProba(const TMVA::Event* ev)
virtual Double_tGetProba(Double_t mvaVal, Double_t ap_sig)
const TStringGetProbaName() const
virtual Double_tGetRarity(Double_t mvaVal, TMVA::Types::ESBType reftype = Types::kBackground) const
virtual voidGetRegressionDeviation(UInt_t tgtNum, TMVA::Types::ETreeType type, Double_t& stddev, Double_t& stddev90Percent) const
virtual const vector<Float_t>&GetRegressionValues()
const vector<Float_t>&GetRegressionValues(const TMVA::Event*const ev)
Double_tGetRMS(Int_t ivar) const
virtual Double_tGetROCIntegral(TH1D* histS, TH1D* histB) const
virtual Double_tGetROCIntegral(TMVA::PDF* pdfS = 0, TMVA::PDF* pdfB = 0) const
virtual Double_tGetSeparation(TH1*, TH1*) const
virtual Double_tGetSeparation(TMVA::PDF* pdfS = 0, TMVA::PDF* pdfB = 0) const
Double_tGetSignalReferenceCut() const
Double_tGetSignalReferenceCutOrientation() const
virtual Double_tGetSignificance() const
const TMVA::Event*GetTestingEvent(Long64_t ievt) const
Double_tGetTestTime() const
const TString&GetTestvarName() const
virtual const char*TNamed::GetTitle() const
virtual Double_tGetTrainingEfficiency(const TString&)
const TMVA::Event*GetTrainingEvent(Long64_t ievt) const
UInt_tGetTrainingROOTVersionCode() const
TStringGetTrainingROOTVersionString() const
UInt_tGetTrainingTMVAVersionCode() const
TStringGetTrainingTMVAVersionString() const
Double_tGetTrainTime() const
TMVA::TransformationHandler&GetTransformationHandler(Bool_t takeReroutedIfAvailable = true)
const TMVA::TransformationHandler&GetTransformationHandler(Bool_t takeReroutedIfAvailable = true) const
virtual UInt_tTObject::GetUniqueID() const
TStringGetWeightFileName() const
Double_tGetXmax(Int_t ivar) const
Double_tGetXmin(Int_t ivar) const
virtual Bool_tTObject::HandleTimer(TTimer* timer)
virtual Bool_tTMVA::IMethod::HasAnalysisType(TMVA::Types::EAnalysisType type, UInt_t numberClasses, UInt_t numberTargets)
virtual ULong_tTNamed::Hash() const
Bool_tHasMVAPdfs() const
TMVA::IMethodTMVA::IMethod::IMethod()
TMVA::IMethodTMVA::IMethod::IMethod(const TMVA::IMethod&)
virtual voidTObject::Info(const char* method, const char* msgfmt) const
virtual Bool_tTObject::InheritsFrom(const char* classname) const
virtual Bool_tTObject::InheritsFrom(const TClass* cl) const
virtual voidInit()
voidInitIPythonInteractive()
virtual voidTObject::Inspect() constMENU
voidTObject::InvertBit(UInt_t f)
virtual TClass*IsA() const
virtual Bool_tTObject::IsEqual(const TObject* obj) const
virtual Bool_tTObject::IsFolder() const
Bool_tIsModelPersistence()
Bool_tTObject::IsOnHeap() const
virtual Bool_tIsSignalLike()
virtual Bool_tIsSignalLike(Double_t mvaVal)
Bool_tIsSilentFile()
virtual Bool_tTNamed::IsSortable() const
Bool_tTObject::IsZombie() const
TMVA::MsgLogger&TMVA::Configurable::Log() const
virtual voidTNamed::ls(Option_t* option = "") const
virtual voidMakeClass(const TString& classFileName = TString("")) const
voidTObject::MayNotUse(const char* method) const
TMVA::MethodBaseMethodBase(const TMVA::MethodBase&)
TMVA::MethodBaseMethodBase(TMVA::Types::EMVA methodType, TMVA::DataSetInfo& dsi, const TString& weightFile)
TMVA::MethodBaseMethodBase(const TString& jobName, TMVA::Types::EMVA methodType, const TString& methodTitle, TMVA::DataSetInfo& dsi, const TString& theOption = "")
TDirectory*MethodBaseDir() const
virtual Bool_tTObject::Notify()
voidTObject::Obsolete(const char* method, const char* asOfVers, const char* removedFromVers) const
voidTObject::operator delete(void* ptr)
voidTObject::operator delete(void* ptr, void* vp)
voidTObject::operator delete[](void* ptr)
voidTObject::operator delete[](void* ptr, void* vp)
void*TObject::operator new(size_t sz)
void*TObject::operator new(size_t sz, void* vp)
void*TObject::operator new[](size_t sz)
void*TObject::operator new[](size_t sz, void* vp)
TMVA::MethodBase&operator=(const TMVA::MethodBase&)
virtual map<TString,Double_t>OptimizeTuningParameters(TString fomType = "ROCIntegral", TString fitType = "FitGA")
virtual voidTObject::Paint(Option_t* option = "")
virtual voidTMVA::Configurable::ParseOptions()
virtual voidTObject::Pop()
virtual voidTNamed::Print(Option_t* option = "") const
virtual voidPrintHelpMessage() const
voidTMVA::Configurable::PrintOptions() const
virtual voidProcessOptions()
voidProcessSetup()
virtual Int_tTObject::Read(const char* name)
voidTMVA::Configurable::ReadOptionsFromStream(istream& istr)
voidTMVA::Configurable::ReadOptionsFromXML(void* node)
voidReadStateFromFile()
voidReadStateFromStream(istream& tf)
voidReadStateFromStream(TFile& rf)
voidReadStateFromXMLString(const char* xmlstr)
virtual voidTObject::RecursiveRemove(TObject* obj)
voidRerouteTransformationHandler(TMVA::TransformationHandler* fTargetTransformation)
virtual voidReset()
voidTObject::ResetBit(UInt_t f)
virtual voidTObject::SaveAs(const char* filename = "", Option_t* option = "") constMENU
virtual voidTObject::SavePrimitive(ostream& out, Option_t* option = "")
virtual voidSetAnalysisType(TMVA::Types::EAnalysisType type)
voidSetBaseDir(TDirectory* methodDir)
voidTObject::SetBit(UInt_t f)
voidTObject::SetBit(UInt_t f, Bool_t set)
voidTMVA::Configurable::SetConfigDescription(const char* d)
voidTMVA::Configurable::SetConfigName(const char* n)
virtual voidTObject::SetDrawOption(Option_t* option = "")MENU
static voidTObject::SetDtorOnly(void* obj)
voidSetFile(TFile* file)
voidSetMethodBaseDir(TDirectory* methodDir)
voidSetMethodDir(TDirectory* methodDir)
voidSetModelPersistence(Bool_t status)
voidTMVA::Configurable::SetMsgType(TMVA::EMsgType t)
virtual voidTNamed::SetName(const char* name)MENU
virtual voidTNamed::SetNameTitle(const char* name, const char* title)
static voidTObject::SetObjectStat(Bool_t stat)
voidTMVA::Configurable::SetOptions(const TString& s)
voidSetSignalReferenceCut(Double_t cut)
voidSetSignalReferenceCutOrientation(Double_t cutOrientation)
voidSetSilentFile(Bool_t status)
voidSetTestTime(Double_t testTime)
voidSetTestvarName(const TString& v = "")
virtual voidTNamed::SetTitle(const char* title = "")MENU
voidSetTrainTime(Double_t trainTime)
virtual voidSetTuneParameters(map<TString,Double_t> tuneParameters)
virtual voidTObject::SetUniqueID(UInt_t uid)
voidSetupMethod()
virtual voidShowMembers(TMemberInspector& insp) const
virtual Int_tTNamed::Sizeof() const
virtual voidStreamer(TBuffer&)
voidStreamerNVirtual(TBuffer& ClassDef_StreamerNVirtual_b)
virtual voidTObject::SysError(const char* method, const char* msgfmt) const
Bool_tTObject::TestBit(UInt_t f) const
Int_tTObject::TestBits(UInt_t f) const
virtual voidTestClassification()
virtual voidTestMulticlass()
virtual voidTestRegression(Double_t& bias, Double_t& biasT, Double_t& dev, Double_t& devT, Double_t& rms, Double_t& rmsT, Double_t& mInf, Double_t& mInfT, Double_t& corr, TMVA::Types::ETreeType type)
virtual voidTrain()
boolTrainingEnded()
voidTrainMethod()
virtual voidTObject::UseCurrentStyle()
virtual voidTObject::Warning(const char* method, const char* msgfmt) const
virtual Int_tTObject::Write(const char* name = 0, Int_t option = 0, Int_t bufsize = 0)
virtual Int_tTObject::Write(const char* name = 0, Int_t option = 0, Int_t bufsize = 0) const
virtual voidWriteEvaluationHistosToFile(TMVA::Types::ETreeType treetype)
virtual voidWriteMonitoringHistosToFile() const
voidTMVA::Configurable::WriteOptionsToStream(ostream& o, const TString& prefix) const
voidWriteStateToFile() const
protected:
virtual voidAddWeightsXMLTo(void* parent) const
virtual voidTObject::DoError(int level, const char* location, const char* fmt, va_list va) const
voidTMVA::Configurable::EnableLooseOptions(Bool_t b = kTRUE)
virtual voidTMVA::IMethod::GetHelpMessage() const
const TString&GetInternalVarName(Int_t ivar) const
virtual vector<Double_t>GetMvaValues(Long64_t firstEvt = 0, Long64_t lastEvt = -1, Bool_t logProgress = false)
const TString&GetOriginalVarName(Int_t ivar) const
const TString&TMVA::Configurable::GetReferenceFile() const
const TString&GetWeightFileDir() const
Bool_tHasTrainingTree() const
Bool_tHelp() const
Bool_tIgnoreEventsWithNegWeightsInTraining() const
Bool_tIsConstructedFromWeightFile() const
Bool_tIsNormalised() const
Bool_tTMVA::Configurable::LooseOptionCheckingEnabled() const
virtual voidMakeClassSpecific(ostream&, const TString& = "") const
virtual voidMakeClassSpecificHeader(ostream&, const TString& = "") const
voidTObject::MakeZombie()
voidNoErrorCalc(Double_t*const err, Double_t*const errUpper)
virtual voidReadWeightsFromStream(istream&)
virtual voidReadWeightsFromStream(TFile&)
virtual voidReadWeightsFromXML(void* wghtnode)
voidTMVA::Configurable::ResetSetFlag()
voidSetNormalised(Bool_t norm)
voidSetWeightFileDir(TString fileDir)
voidSetWeightFileName(TString)
voidStatistics(TMVA::Types::ETreeType treeType, const TString& theVarName, Double_t&, Double_t&, Double_t&, Double_t&, Double_t&, Double_t&)
Bool_tTxtWeightsOnly() const
Bool_tVerbose() const
voidTMVA::Configurable::WriteOptionsReferenceToFile()
private:
voidAddClassesXMLTo(void* parent) const
virtual voidAddClassifierOutput(TMVA::Types::ETreeType type)
virtual voidAddClassifierOutputProb(TMVA::Types::ETreeType type)
voidAddInfoItem(void* gi, const TString& name, const TString& value) const
virtual voidAddMulticlassOutput(TMVA::Types::ETreeType type)
virtual voidAddRegressionOutput(TMVA::Types::ETreeType type)
voidAddSpectatorsXMLTo(void* parent) const
voidAddTargetsXMLTo(void* parent) const
voidAddVarsXMLTo(void* parent) const
voidCreateMVAPdfs()
voidDeclareBaseOptions()
TMVA::MethodBase::ECutOrientationGetCutOrientation() const
Bool_tGetLine(istream& fin, char* buf)
virtual Double_tGetValueForRoot(Double_t)
voidInitBase()
voidProcessBaseOptions()
voidReadClassesFromXML(void* clsnode)
voidReadSpectatorsFromXML(void* specnode)
voidReadStateFromXML(void* parent)
voidReadTargetsFromXML(void* tarnode)
voidReadVariablesFromXML(void* varnode)
voidReadVarsFromStream(istream& istr)
voidResetThisBase()
voidWriteStateToStream(ostream& tf) const
voidWriteStateToXML(void* parent) const
voidWriteVarsToStream(ostream& tf, const TString& prefix = "") const

Data Members

public:
Bool_tfSetupCompletedis method setup
const TMVA::Event*fTmpEvent! temporary event when testing on a different DataSet than the own one
static TObject::(anonymous)TObject::kBitMask
static TObject::EStatusBitsTObject::kCanDelete
static TObject::EStatusBitsTObject::kCannotPick
static TObject::EStatusBitsTObject::kHasUUID
static TObject::EStatusBitsTObject::kInvalidObject
static TObject::(anonymous)TObject::kIsOnHeap
static TObject::EStatusBitsTObject::kIsReferenced
static TObject::EStatusBitsTObject::kMustCleanup
static TObject::EStatusBitsTObject::kNoContextMenu
static TObject::(anonymous)TObject::kNotDeleted
static TObject::EStatusBitsTObject::kObjInCanvas
static TObject::(anonymous)TObject::kOverwrite
static TMVA::MethodBase::EWeightFileTypekROOT
static TObject::(anonymous)TObject::kSingleKey
static TMVA::MethodBase::EWeightFileTypekTEXT
static TObject::(anonymous)TObject::kWriteDelete
static TObject::(anonymous)TObject::kZombie
protected:
TMVA::Types::EAnalysisTypefAnalysisTypemethod-mode : true --> regression, false --> classification
UInt_tfBackgroundClassindex of the Background-class
boolfExitFromTraining
UInt_tfIPyCurrentIter
UInt_tfIPyMaxIter
vector<TString>*fInputVarsvector of input variables used in MVA
TMVA::IPythonInteractive*fInteractive
TMVA::MsgLogger*TMVA::Configurable::fLogger! message logger
vector<Float_t>*fMulticlassReturnValholds the return-values for the multiclass classification
TStringTNamed::fNameobject identifier
Int_tfNbinsnumber of bins in input variable histograms
Int_tfNbinsHnumber of bins in evaluation histograms
Int_tfNbinsMVAoutputnumber of bins in MVA output histograms
TMVA::Ranking*fRankingpointer to ranking object (created by derived classifiers)
vector<Float_t>*fRegressionReturnValholds the return-values for the regression
TMVA::Results*fResults
UInt_tfSignalClassindex of the Signal-class
TStringTNamed::fTitleobject title
private:
TDirectory*fBaseDirbase directory for the instance, needed to know where to jump back from localDir
Bool_tfConstructedFromWeightFileis it obtained from weight file?
TMVA::MethodBase::ECutOrientationfCutOrientation+1 if Sig>Bkg, -1 otherwise
TMVA::DataSetInfo&fDataSetInfo! the data set information (sometimes needed)
TMVA::PDF*fDefaultPDFdefault PDF definitions
TH1*fEffSefficiency histogram for rootfinder
vector<const vector<TMVA::Event*>*>fEventCollectionsif the method needs the complete event-collection, the transformed event coll. ist stored here.
TFile*fFile
TStringfFileDirunix sub-directory for weight files (default: DataLoader's Name + "weights")
Bool_tfHasMVAPdfsMVA Pdfs are created for this classifier
Bool_tfHelphelp flag
Bool_tfIgnoreNegWeightsInTrainingIf true, events with negative weights are not used in training
TStringfJobNamename of job -> user defined, appears in weight files
TMVA::PDF*fMVAPdfBbackground MVA PDF
TMVA::PDF*fMVAPdfSsignal MVA PDF
Double_tfMeanBmean (background)
Double_tfMeanSmean (signal)
TDirectory*fMethodBaseDirbase directory for the method
TStringfMethodNamename of the method (set in derived class)
TMVA::Types::EMVAfMethodTypetype of method (set in derived class)
Bool_tfModelPersistence
Int_tfNbinsMVAPdfnumber of bins used in histogram that creates PDF
Bool_tfNormalisenormalise input variables
Int_tfNsmoothMVAPdfnumber of times a histogram is smoothed before creating the PDF
TStringfParentDirmethod parent name, like booster name
UInt_tfROOTTrainingVersionROOT version used for training
Double_tfRmsBRMS (background)
Double_tfRmsSRMS (signal)
Double_tfSignalReferenceCutminimum requirement on the MVA output to declare an event signal-like
Double_tfSignalReferenceCutOrientationminimum requirement on the MVA output to declare an event signal-like
Bool_tfSilentFile
TMVA::PDF*fSplBPDFs of MVA distribution (background)
TMVA::TSpline1*fSplRefBhelper splines for RootFinder (background)
TMVA::TSpline1*fSplRefShelper splines for RootFinder (signal)
TMVA::PDF*fSplSPDFs of MVA distribution (signal)
TMVA::PDF*fSplTrainBPDFs of training MVA distribution (background)
TSpline*fSplTrainEffBvsSsplines for training signal eff. versus background eff.
TMVA::TSpline1*fSplTrainRefBhelper splines for RootFinder (background)
TMVA::TSpline1*fSplTrainRefShelper splines for RootFinder (signal)
TMVA::PDF*fSplTrainSPDFs of training MVA distribution (signal)
TSpline*fSpleffBvsSsplines for signal eff. versus background eff.
UInt_tfTMVATrainingVersionTMVA version used for training
Double_tfTestTimefor timing measurements
TStringfTestvarvariable used in evaluation, etc (mostly the MVA)
Double_tfTrainTimefor timing measurements
TMVA::TransformationHandlerfTransformationthe list of transformations
TMVA::TransformationHandler*fTransformationPointerpointer to the rest of transformations
Bool_tfTxtWeightsOnlyif TRUE, write weights only to text files
Bool_tfUseDecorrsynonymous for decorrelation
TStringfVarTransformStringlabels variable transform method
TMVA::Types::ESBTypefVariableTransformTypethis is the event type (sig or bgd) assumed for variable transform
TStringfVariableTransformTypeStringlabels variable transform type
Bool_tfVerboseverbose flag
TMVA::EMsgTypefVerbosityLevelverbosity level
TStringfVerbosityLevelStringverbosity level (user input string)
TStringfWeightFileweight file name
Double_tfXmaxmaximum (signal and background)
Double_tfXminminimum (signal and background)
static TMVA::MethodBase::ECutOrientationkNegative
static TMVA::MethodBase::ECutOrientationkPositive

Class Charts

Inheritance Chart:
TMVA::IMethod
TObject
TNamed
TMVA::Configurable
TMVA::MethodBase
TMVA::MethodANNBase
TMVA::MethodMLP
TMVA::MethodBDT
TMVA::MethodBayesClassifier
TMVA::MethodCFMlpANN
TMVA::MethodCompositeBase
TMVA::MethodBoost
TMVA::MethodCategory
TMVA::MethodCuts
TMVA::MethodDNN
 [more...]

Function documentation

const TMVA::Event* GetEvent(const TMVA::Event* ev) const
const TMVA::Event* GetEvent() const
const TMVA::Event* GetEvent(Long64_t ievt) const
const TMVA::Event* GetEvent(Long64_t ievt, TMVA::Types::ETreeType type) const
const TMVA::Event* GetTrainingEvent(Long64_t ievt) const
const TMVA::Event* GetTestingEvent(Long64_t ievt) const
void Init(std::vector<TString>& graphTitles)
MethodBase(const TString& jobName, TMVA::Types::EMVA methodType, const TString& methodTitle, TMVA::DataSetInfo& dsi, const TString& theOption = "")
 default constructur
virtual ~MethodBase()
 constructor used for Testing + Application of the MVA, only (no training),
 using given weight file
 default destructur
void SetupMethod()
 declaration, processing and checking of configuration options
void ProcessSetup()
void CheckSetup()
void AddOutput(TMVA::Types::ETreeType type, TMVA::Types::EAnalysisType analysisType)
 ---------- main training and testing methods ------------------------------
 prepare tree branch with the method's discriminating variable
void TrainMethod()
 performs classifier training
 calls methods Train() implemented by derived classes
std::map<TString,Double_t> OptimizeTuningParameters(TString fomType = "ROCIntegral", TString fitType = "FitGA")
 optimize tuning parameters
void SetTuneParameters(map<TString,Double_t> tuneParameters)
void Train()
void SetTrainTime(Double_t trainTime)
 store and retrieve time used for training
{ fTrainTime = trainTime; }
Double_t GetTrainTime() const
{ return fTrainTime; }
void SetTestTime(Double_t testTime)
 store and retrieve time used for testing
{ fTestTime = testTime; }
Double_t GetTestTime() const
{ return fTestTime; }
void TestClassification()
 performs classifier testing
Double_t GetKSTrainingVsTest(Char_t SorB, TString opt = "X")
void TestMulticlass()
 performs multiclass classifier testing
void TestRegression(Double_t& bias, Double_t& biasT, Double_t& dev, Double_t& devT, Double_t& rms, Double_t& rmsT, Double_t& mInf, Double_t& mInfT, Double_t& corr, TMVA::Types::ETreeType type)
 performs regression testing
void DeclareOptions()
 options treatment
void ProcessOptions()
void DeclareCompatibilityOptions()
void Reset()
 reset the Method --> As if it was not yet trained, just instantiated
      virtual void     Reset()          = 0;
for the moment, I provide a dummy (that would not work) default, just to make
 compilation/running w/o parameter optimisation still possible
{return;}
Double_t GetMvaValue(Double_t* errLower = 0, Double_t* errUpper = 0)
 classifier response:
 some methods may return a per-event error estimate
 error calculation is skipped if err==0
Double_t GetMvaValue(const TMVA::Event*const ev, Double_t* err = 0, Double_t* errUpper = 0)
 signal/background classification response
void NoErrorCalc(Double_t*const err, Double_t*const errUpper)
 helper function to set errors to -1
std::vector<Double_t> GetMvaValues(Long64_t firstEvt = 0, Long64_t lastEvt = -1, Bool_t logProgress = false)
 signal/background classification response for all current set of data
const std::vector<Float_t>& GetRegressionValues(const TMVA::Event*const ev)
 regression response
const std::vector<Float_t>& GetRegressionValues()
const std::vector<Float_t>& GetMulticlassValues()
 multiclass classification response
Double_t GetProba(const TMVA::Event* ev)
 probability of classifier response (mvaval) to be signal (requires "CreateMvaPdf" option set)
Double_t GetProba(Double_t mvaVal, Double_t ap_sig)
Double_t GetRarity(Double_t mvaVal, TMVA::Types::ESBType reftype = Types::kBackground) const
 Rarity of classifier response (signal or background (default) is uniform in [0,1])
const Ranking* CreateRanking()
 create ranking
void MakeClass(const TString& classFileName = TString("")) const
 make ROOT-independent C++ class
void PrintHelpMessage() const
 print help message
void WriteStateToFile() const
 streamer methods for training information (creates "weight" files) --------

void ReadStateFromFile()
void AddWeightsXMLTo(void* parent) const
 the actual "weights"
void ReadWeightsFromXML(void* wghtnode)
void ReadWeightsFromStream(istream& )
void ReadWeightsFromStream(TFile& )
{}
void WriteStateToXML(void* parent) const
void ReadStateFromXML(void* parent)
void WriteStateToStream(ostream& tf) const
void WriteVarsToStream(ostream& tf, const TString& prefix = "") const
void ReadStateFromStream(istream& tf)
void ReadStateFromStream(TFile& rf)
void ReadStateFromXMLString(const char* xmlstr)
void AddVarsXMLTo(void* parent) const
 the variable information
void AddSpectatorsXMLTo(void* parent) const
void AddTargetsXMLTo(void* parent) const
void AddClassesXMLTo(void* parent) const
void ReadVariablesFromXML(void* varnode)
void ReadSpectatorsFromXML(void* specnode)
void ReadTargetsFromXML(void* tarnode)
void ReadClassesFromXML(void* clsnode)
void ReadVarsFromStream(istream& istr)
void WriteEvaluationHistosToFile(TMVA::Types::ETreeType treetype)
 write evaluation histograms into target file
void WriteMonitoringHistosToFile() const
 write classifier-specific monitoring information to target file
Double_t GetEfficiency(const TString& , TMVA::Types::ETreeType , Double_t& err)
 ---------- public evaluation methods --------------------------------------
 individual initialistion for testing of each method
 overload this one for individual initialisation of the testing,
 it is then called automatically within the global "TestInit"
 variables (and private menber functions) for the Evaluation:
 get the effiency. It fills a histogram for efficiency/vs/bkg
 and returns the one value fo the efficiency demanded for
 in the TString argument. (Watch the string format)
Double_t GetTrainingEfficiency(const TString& )
std::vector<Float_t> GetMulticlassEfficiency(vector<vector<Float_t> >& purity)
std::vector<Float_t> GetMulticlassTrainingEfficiency(vector<vector<Float_t> >& purity)
Double_t GetSignificance() const
Double_t GetROCIntegral(TH1D* histS, TH1D* histB) const
Double_t GetROCIntegral(TMVA::PDF* pdfS = 0, TMVA::PDF* pdfB = 0) const
Double_t GetMaximumSignificance(Double_t SignalEvents, Double_t BackgroundEvents, Double_t& optimal_significance_value) const
Double_t GetSeparation( PDF* pdfS = 0, PDF* pdfB = 0 )
void GetRegressionDeviation(UInt_t tgtNum, TMVA::Types::ETreeType type, Double_t& stddev, Double_t& stddev90Percent) const
 ---------- public accessors -----------------------------------------------
const TString& GetJobName() const
 classifier naming (a lot of names ... aren't they ;-)
{ return fJobName; }
const TString& GetMethodName() const
{ return fMethodName; }
TString GetMethodTypeName() const
{ return Types::Instance().GetMethodName(fMethodType); }
Types::EMVA GetMethodType() const
{ return fMethodType; }
const char* GetName() const
{ return fMethodName.Data(); }
const TString& GetTestvarName() const
{ return fTestvar; }
const TString GetProbaName() const
{ return fTestvar + "_Proba"; }
TString GetWeightFileName() const
void SetTestvarName(const TString& v = "")
 build classifier name in Test tree
 MVA prefix (e.g., "TMVA_")
{ fTestvar = (v=="") ? ("MVA_" + GetMethodName()) : v; }
UInt_t GetNvar() const
 number of input variable used by classifier
{ return DataInfo().GetNVariables(); }
UInt_t GetNVariables() const
{ return DataInfo().GetNVariables(); }
UInt_t GetNTargets() const
{ return DataInfo().GetNTargets(); }
const TString& GetInputVar(Int_t i) const
 internal names and expressions of input variables
const TString& GetInputLabel(Int_t i) const
{ return DataInfo().GetVariableInfo(i).GetLabel(); }
const char * GetInputTitle(Int_t i) const
{ return DataInfo().GetVariableInfo(i).GetTitle(); }
Double_t GetMean(Int_t ivar) const
 normalisation and limit accessors
{ return GetTransformationHandler().GetMean(ivar); }
Double_t GetRMS(Int_t ivar) const
{ return GetTransformationHandler().GetRMS(ivar); }
Double_t GetXmin(Int_t ivar) const
{ return GetTransformationHandler().GetMin(ivar); }
Double_t GetXmax(Int_t ivar) const
{ return GetTransformationHandler().GetMax(ivar); }
Double_t GetSignalReferenceCut() const
 sets the minimum requirement on the MVA output to declare an event signal-like
Double_t GetSignalReferenceCutOrientation() const
void SetSignalReferenceCut(Double_t cut)
 sets the minimum requirement on the MVA output to declare an event signal-like
void SetSignalReferenceCutOrientation(Double_t cutOrientation)
{ fSignalReferenceCutOrientation = cutOrientation; }
TDirectory* BaseDir() const
 pointers to ROOT directories
TDirectory* MethodBaseDir() const
TFile* GetFile() const
{return fFile;}
void SetMethodDir(TDirectory* methodDir)
{ fBaseDir = fMethodBaseDir = methodDir; }
void SetBaseDir(TDirectory* methodDir)
{ fBaseDir = methodDir; }
void SetMethodBaseDir(TDirectory* methodDir)
{ fMethodBaseDir = methodDir; }
void SetFile(TFile* file)
{fFile=file;}
void SetSilentFile(Bool_t status)
Silent file
{fSilentFile=status;}
Bool_t IsSilentFile()
{return fSilentFile;}
void SetModelPersistence(Bool_t status)
Model Persistence
Bool_t IsModelPersistence()
UInt_t GetTrainingTMVAVersionCode() const
 the TMVA version can be obtained and checked using
    if (GetTrainingTMVAVersionCode()>TMVA_VERSION(3,7,2)) {...}
 or
    if (GetTrainingROOTVersionCode()>ROOT_VERSION(5,15,5)) {...}
UInt_t GetTrainingROOTVersionCode() const
TString GetTrainingTMVAVersionString() const
TString GetTrainingROOTVersionString() const
TransformationHandler& GetTransformationHandler(Bool_t takeReroutedIfAvailable = true)
const TransformationHandler& GetTransformationHandler(Bool_t takeReroutedIfAvailable = true) const
void RerouteTransformationHandler(TMVA::TransformationHandler* fTargetTransformation)
{ fTransformationPointer=fTargetTransformation; }
DataSetInfo& DataInfo() const
{ return fDataSetInfo; }
UInt_t GetNEvents() const
 event reference and update
 NOTE: these Event accessors make sure that you get the events transformed according to the
        particular clasifiers transformation chosen
{ return Data()->GetNEvents(); }
const std::vector<TMVA::Event*>& GetEventCollection(TMVA::Types::ETreeType type)
Bool_t IsSignalLike()
 ---------- public auxiliary methods ---------------------------------------
 this method is used to decide whether an event is signal- or background-like
 the reference cut "xC" is taken to be where
 Int_[-oo,xC] { PDF_S(x) dx } = Int_[xC,+oo] { PDF_B(x) dx }
Bool_t IsSignalLike(Double_t mvaVal)
Bool_t HasMVAPdfs() const
{ return fHasMVAPdfs; }
void SetAnalysisType(TMVA::Types::EAnalysisType type)
{ fAnalysisType = type; }
Types::EAnalysisType GetAnalysisType() const
{ return fAnalysisType; }
Bool_t DoRegression() const
{ return fAnalysisType == Types::kRegression; }
Bool_t DoMulticlass() const
{ return fAnalysisType == Types::kMulticlass; }
void DisableWriting(Bool_t setter)
 setter method for suppressing writing to XML and writing of standalone classes
void InitIPythonInteractive()
 initializing IPythonInteractive class (for JsMVA only)
TMultiGraph* GetInteractiveTrainingError()
 get training errors (for JsMVA only)
{return fInteractive->Get();}
void ExitFromTraining()
 stop's the training process (for JsMVA only)
bool TrainingEnded()
 check's if the training ended (for JsMVA only)
UInt_t GetMaxIter()
{ return fIPyMaxIter; }
UInt_t GetCurrentIter()
{ return fIPyCurrentIter; }
void SetWeightFileName(TString )
 ---------- protected acccessors -------------------------------------------
TDirectory*  LocalTDir() const { return Data().LocalRootDir(); }
 weight file name and directory (given by global config variable)
const TString& GetWeightFileDir() const
{ return fFileDir; }
void SetWeightFileDir(TString fileDir)
Bool_t IsNormalised() const
 are input variables normalised ?
{ return fNormalise; }
void SetNormalised(Bool_t norm)
{ fNormalise = norm; }
Bool_t Verbose() const
 set number of input variables (only used by MethodCuts, could perhaps be removed)
      void SetNvar( Int_t n ) { fNvar = n; }
 verbose and help flags
{ return fVerbose; }
Bool_t Help() const
{ return fHelp; }
const TString& GetInternalVarName(Int_t ivar) const
 ---------- protected event and tree accessors -----------------------------
 names of input variables (if the original names are expressions, they are
 transformed into regexps)
{ return (*fInputVars)[ivar]; }
const TString& GetOriginalVarName(Int_t ivar) const
{ return DataInfo().GetVariableInfo(ivar).GetExpression(); }
Bool_t HasTrainingTree() const
{ return Data()->GetNTrainingEvents() != 0; }
void MakeClassSpecific(ostream& , const TString& = "") const
 ---------- protected auxiliary methods ------------------------------------
 make ROOT-independent C++ class for classifier response (classifier-specific implementation)
{}
void MakeClassSpecificHeader(ostream& , const TString& = "") const
 header and auxiliary classes
{}
void Statistics(TMVA::Types::ETreeType treeType, const TString& theVarName, Double_t& , Double_t& , Double_t& , Double_t& , Double_t& , Double_t& )
 static pointer to this object - required for ROOT finder (to be solved differently)(solved by Omar)
static MethodBase* GetThisBase();
 some basic statistical analysis
{ return kTRUE; }
Bool_t IsConstructedFromWeightFile() const
 if TRUE, write weights only to text files
 access to event information that needs method-specific information
void InitBase()
 ---------- private definitions --------------------------------------------
 Initialisation
void DeclareBaseOptions()
void ProcessBaseOptions()
ECutOrientation GetCutOrientation() const
{ return fCutOrientation; }
void ResetThisBase()
 ---------- private acccessors ---------------------------------------------
 reset required for RootFinder
void CreateMVAPdfs()
 ---------- private auxiliary methods --------------------------------------
 PDFs for classifier response (required to compute signal probability and Rarity)
Double_t GetValueForRoot(Double_t )
 for root finder
virtual method to find ROOT
Bool_t GetLine(istream& fin, char* buf)
 used for file parsing
void AddClassifierOutput(TMVA::Types::ETreeType type)
 fill test tree with classification or regression results
void AddClassifierOutputProb(TMVA::Types::ETreeType type)
void AddRegressionOutput(TMVA::Types::ETreeType type)
void AddMulticlassOutput(TMVA::Types::ETreeType type)
void AddInfoItem(void* gi, const TString& name, const TString& value) const
 ========== class members ==================================================
 direct accessors
Bool_t IgnoreEventsWithNegWeightsInTraining() const