A++ » TMVA » TMVA::MethodCuts

class TMVA::MethodCuts: public TMVA::MethodBase, public TMVA::IFitterTarget


MethodCuts

Multivariate optimisation of signal efficiency for given background
efficiency, using rectangular minimum and maximum requirements on
input variables


Function Members (Methods)

public:
virtual~MethodCuts()
voidTObject::AbstractMethod(const char* method) const
voidTMVA::Configurable::AddOptionsXMLTo(void* parent) const
voidTMVA::MethodBase::AddOutput(TMVA::Types::ETreeType type, TMVA::Types::EAnalysisType analysisType)
virtual voidAddWeightsXMLTo(void* parent) const
virtual voidTObject::AppendPad(Option_t* option = "")
TDirectory*TMVA::MethodBase::BaseDir() const
virtual voidTObject::Browse(TBrowser* b)
voidTMVA::Configurable::CheckForUnusedOptions() const
virtual voidCheckSetup()
static TClass*Class()
virtual const char*TObject::ClassName() const
virtual voidTNamed::Clear(Option_t* option = "")
virtual TObject*TNamed::Clone(const char* newname = "") const
virtual Int_tTNamed::Compare(const TObject* obj) const
Double_tComputeEstimator(vector<Double_t>&)
TMVA::ConfigurableTMVA::Configurable::Configurable(const TString& theOption = "")
TMVA::ConfigurableTMVA::Configurable::Configurable(const TMVA::Configurable&)
virtual voidTNamed::Copy(TObject& named) const
virtual const TMVA::Ranking*CreateRanking()
TMVA::DataSet*TMVA::MethodBase::Data() const
TMVA::DataSetInfo&TMVA::MethodBase::DataInfo() const
virtual voidTMVA::MethodBase::DeclareCompatibilityOptions()
virtual voidDeclareOptions()
virtual voidTObject::Delete(Option_t* option = "")MENU
voidTMVA::MethodBase::DisableWriting(Bool_t setter)
virtual Int_tTObject::DistancetoPrimitive(Int_t px, Int_t py)
Bool_tTMVA::MethodBase::DoMulticlass() const
Bool_tTMVA::MethodBase::DoRegression() const
virtual voidTObject::Draw(Option_t* option = "")
virtual voidTObject::DrawClass() constMENU
virtual TObject*TObject::DrawClone(Option_t* option = "") constMENU
virtual voidTObject::Dump() constMENU
static TMVA::MethodCuts*DynamicCast(TMVA::IMethod* method)
virtual voidTObject::Error(const char* method, const char* msgfmt) const
virtual Double_tEstimatorFunction(vector<Double_t>&)
Double_tEstimatorFunction(Int_t ievt1, Int_t ievt2)
virtual voidTObject::Execute(const char* method, const char* params, Int_t* error = 0)
virtual voidTObject::Execute(TMethod* method, TObjArray* params, Int_t* error = 0)
virtual voidTObject::ExecuteEvent(Int_t event, Int_t px, Int_t py)
voidTMVA::MethodBase::ExitFromTraining()
virtual voidTObject::Fatal(const char* method, const char* msgfmt) const
virtual voidTNamed::FillBuffer(char*& buffer)
virtual TObject*TObject::FindObject(const char* name) const
virtual TObject*TObject::FindObject(const TObject* obj) const
TMVA::Types::EAnalysisTypeTMVA::MethodBase::GetAnalysisType() const
const char*TMVA::Configurable::GetConfigDescription() const
const char*TMVA::Configurable::GetConfigName() const
UInt_tTMVA::MethodBase::GetCurrentIter()
Double_tGetCuts(Double_t effS, vector<Double_t>& cutMin, vector<Double_t>& cutMax) const
Double_tGetCuts(Double_t effS, Double_t* cutMin, Double_t* cutMax) const
virtual Option_t*TObject::GetDrawOption() const
static Long_tTObject::GetDtorOnly()
virtual Double_tGetEfficiency(const TString&, TMVA::Types::ETreeType, Double_t&)
const TMVA::Event*TMVA::MethodBase::GetEvent() const
const TMVA::Event*TMVA::MethodBase::GetEvent(const TMVA::Event* ev) const
const TMVA::Event*TMVA::MethodBase::GetEvent(Long64_t ievt) const
const TMVA::Event*TMVA::MethodBase::GetEvent(Long64_t ievt, TMVA::Types::ETreeType type) const
const vector<TMVA::Event*>&TMVA::MethodBase::GetEventCollection(TMVA::Types::ETreeType type)
TFile*TMVA::MethodBase::GetFile() const
virtual const char*TObject::GetIconName() const
const TString&TMVA::MethodBase::GetInputLabel(Int_t i) const
const char*TMVA::MethodBase::GetInputTitle(Int_t i) const
const TString&TMVA::MethodBase::GetInputVar(Int_t i) const
TMultiGraph*TMVA::MethodBase::GetInteractiveTrainingError()
const TString&TMVA::MethodBase::GetJobName() const
virtual Double_tTMVA::MethodBase::GetKSTrainingVsTest(Char_t SorB, TString opt = "X")
virtual Double_tTMVA::MethodBase::GetMaximumSignificance(Double_t SignalEvents, Double_t BackgroundEvents, Double_t& optimal_significance_value) const
UInt_tTMVA::MethodBase::GetMaxIter()
Double_tTMVA::MethodBase::GetMean(Int_t ivar) const
const TString&TMVA::MethodBase::GetMethodName() const
TMVA::Types::EMVATMVA::MethodBase::GetMethodType() const
TStringTMVA::MethodBase::GetMethodTypeName() const
virtual vector<Float_t>TMVA::MethodBase::GetMulticlassEfficiency(vector<vector<Float_t> >& purity)
virtual vector<Float_t>TMVA::MethodBase::GetMulticlassTrainingEfficiency(vector<vector<Float_t> >& purity)
virtual const vector<Float_t>&TMVA::MethodBase::GetMulticlassValues()
Double_tGetmuTransform(TTree*)
virtual Double_tGetMvaValue(Double_t* err = 0, Double_t* errUpper = 0)
virtual const char*TMVA::MethodBase::GetName() const
UInt_tTMVA::MethodBase::GetNEvents() const
UInt_tTMVA::MethodBase::GetNTargets() const
UInt_tTMVA::MethodBase::GetNvar() const
UInt_tTMVA::MethodBase::GetNVariables() const
virtual char*TObject::GetObjectInfo(Int_t px, Int_t py) const
static Bool_tTObject::GetObjectStat()
virtual Option_t*TObject::GetOption() const
const TString&TMVA::Configurable::GetOptions() const
virtual Double_tTMVA::MethodBase::GetProba(const TMVA::Event* ev)
virtual Double_tTMVA::MethodBase::GetProba(Double_t mvaVal, Double_t ap_sig)
const TStringTMVA::MethodBase::GetProbaName() const
virtual Double_tGetRarity(Double_t, TMVA::Types::ESBType) const
virtual voidTMVA::MethodBase::GetRegressionDeviation(UInt_t tgtNum, TMVA::Types::ETreeType type, Double_t& stddev, Double_t& stddev90Percent) const
virtual const vector<Float_t>&TMVA::MethodBase::GetRegressionValues()
const vector<Float_t>&TMVA::MethodBase::GetRegressionValues(const TMVA::Event*const ev)
Double_tTMVA::MethodBase::GetRMS(Int_t ivar) const
virtual Double_tTMVA::MethodBase::GetROCIntegral(TH1D* histS, TH1D* histB) const
virtual Double_tTMVA::MethodBase::GetROCIntegral(TMVA::PDF* pdfS = 0, TMVA::PDF* pdfB = 0) const
virtual Double_tGetSeparation(TH1*, TH1*) const
virtual Double_tGetSeparation(TMVA::PDF* = 0, TMVA::PDF* = 0) const
Double_tTMVA::MethodBase::GetSignalReferenceCut() const
Double_tTMVA::MethodBase::GetSignalReferenceCutOrientation() const
virtual Double_tGetSignificance() const
const TMVA::Event*TMVA::MethodBase::GetTestingEvent(Long64_t ievt) const
Double_tTMVA::MethodBase::GetTestTime() const
const TString&TMVA::MethodBase::GetTestvarName() const
virtual const char*TNamed::GetTitle() const
virtual Double_tGetTrainingEfficiency(const TString&)
const TMVA::Event*TMVA::MethodBase::GetTrainingEvent(Long64_t ievt) const
UInt_tTMVA::MethodBase::GetTrainingROOTVersionCode() const
TStringTMVA::MethodBase::GetTrainingROOTVersionString() const
UInt_tTMVA::MethodBase::GetTrainingTMVAVersionCode() const
TStringTMVA::MethodBase::GetTrainingTMVAVersionString() const
Double_tTMVA::MethodBase::GetTrainTime() const
TMVA::TransformationHandler&TMVA::MethodBase::GetTransformationHandler(Bool_t takeReroutedIfAvailable = true)
const TMVA::TransformationHandler&TMVA::MethodBase::GetTransformationHandler(Bool_t takeReroutedIfAvailable = true) const
virtual UInt_tTObject::GetUniqueID() const
TStringTMVA::MethodBase::GetWeightFileName() const
Double_tTMVA::MethodBase::GetXmax(Int_t ivar) const
Double_tTMVA::MethodBase::GetXmin(Int_t ivar) const
virtual Bool_tTObject::HandleTimer(TTimer* timer)
virtual Bool_tHasAnalysisType(TMVA::Types::EAnalysisType type, UInt_t numberClasses, UInt_t numberTargets)
virtual ULong_tTNamed::Hash() const
Bool_tTMVA::MethodBase::HasMVAPdfs() const
TMVA::IFitterTargetTMVA::IFitterTarget::IFitterTarget()
TMVA::IFitterTargetTMVA::IFitterTarget::IFitterTarget(const TMVA::IFitterTarget&)
TMVA::IMethodTMVA::IMethod::IMethod()
TMVA::IMethodTMVA::IMethod::IMethod(const TMVA::IMethod&)
virtual voidTObject::Info(const char* method, const char* msgfmt) const
virtual Bool_tTObject::InheritsFrom(const char* classname) const
virtual Bool_tTObject::InheritsFrom(const TClass* cl) const
voidTMVA::MethodBase::InitIPythonInteractive()
virtual voidTObject::Inspect() constMENU
voidTObject::InvertBit(UInt_t f)
virtual TClass*IsA() const
virtual Bool_tTObject::IsEqual(const TObject* obj) const
virtual Bool_tTObject::IsFolder() const
Bool_tTMVA::MethodBase::IsModelPersistence()
Bool_tTObject::IsOnHeap() const
virtual Bool_tTMVA::MethodBase::IsSignalLike()
virtual Bool_tTMVA::MethodBase::IsSignalLike(Double_t mvaVal)
Bool_tTMVA::MethodBase::IsSilentFile()
virtual Bool_tTNamed::IsSortable() const
Bool_tTObject::IsZombie() const
TMVA::MsgLogger&TMVA::Configurable::Log() const
virtual voidTNamed::ls(Option_t* option = "") const
virtual voidTMVA::MethodBase::MakeClass(const TString& classFileName = TString("")) const
voidTObject::MayNotUse(const char* method) const
TMVA::MethodBaseTMVA::MethodBase::MethodBase(const TMVA::MethodBase&)
TMVA::MethodBaseTMVA::MethodBase::MethodBase(TMVA::Types::EMVA methodType, TMVA::DataSetInfo& dsi, const TString& weightFile)
TMVA::MethodBaseTMVA::MethodBase::MethodBase(const TString& jobName, TMVA::Types::EMVA methodType, const TString& methodTitle, TMVA::DataSetInfo& dsi, const TString& theOption = "")
TDirectory*TMVA::MethodBase::MethodBaseDir() const
TMVA::MethodCutsMethodCuts(const TMVA::MethodCuts&)
TMVA::MethodCutsMethodCuts(TMVA::DataSetInfo& theData, const TString& theWeightFile)
TMVA::MethodCutsMethodCuts(const TString& jobName, const TString& methodTitle, TMVA::DataSetInfo& theData, const TString& theOption = "MC:150:10000:")
virtual Bool_tTObject::Notify()
voidTObject::Obsolete(const char* method, const char* asOfVers, const char* removedFromVers) const
voidTObject::operator delete(void* ptr)
voidTObject::operator delete(void* ptr, void* vp)
voidTObject::operator delete[](void* ptr)
voidTObject::operator delete[](void* ptr, void* vp)
void*TObject::operator new(size_t sz)
void*TObject::operator new(size_t sz, void* vp)
void*TObject::operator new[](size_t sz)
void*TObject::operator new[](size_t sz, void* vp)
TMVA::MethodCuts&operator=(const TMVA::MethodCuts&)
virtual map<TString,Double_t>TMVA::MethodBase::OptimizeTuningParameters(TString fomType = "ROCIntegral", TString fitType = "FitGA")
virtual voidTObject::Paint(Option_t* option = "")
virtual voidTMVA::Configurable::ParseOptions()
virtual voidTObject::Pop()
virtual voidTNamed::Print(Option_t* option = "") const
voidPrintCuts(Double_t effS) const
virtual voidTMVA::MethodBase::PrintHelpMessage() const
voidTMVA::Configurable::PrintOptions() const
virtual voidProcessOptions()
voidTMVA::MethodBase::ProcessSetup()
virtual voidTMVA::IFitterTarget::ProgressNotifier(TString, TString)
virtual Int_tTObject::Read(const char* name)
voidTMVA::Configurable::ReadOptionsFromStream(istream& istr)
voidTMVA::Configurable::ReadOptionsFromXML(void* node)
voidTMVA::MethodBase::ReadStateFromFile()
voidTMVA::MethodBase::ReadStateFromStream(istream& tf)
voidTMVA::MethodBase::ReadStateFromStream(TFile& rf)
voidTMVA::MethodBase::ReadStateFromXMLString(const char* xmlstr)
virtual voidReadWeightsFromStream(istream& i)
virtual voidReadWeightsFromXML(void* wghtnode)
virtual voidTObject::RecursiveRemove(TObject* obj)
voidTMVA::MethodBase::RerouteTransformationHandler(TMVA::TransformationHandler* fTargetTransformation)
virtual voidTMVA::MethodBase::Reset()
voidTObject::ResetBit(UInt_t f)
virtual voidTObject::SaveAs(const char* filename = "", Option_t* option = "") constMENU
virtual voidTObject::SavePrimitive(ostream& out, Option_t* option = "")
virtual voidTMVA::MethodBase::SetAnalysisType(TMVA::Types::EAnalysisType type)
voidTMVA::MethodBase::SetBaseDir(TDirectory* methodDir)
voidTObject::SetBit(UInt_t f)
voidTObject::SetBit(UInt_t f, Bool_t set)
voidTMVA::Configurable::SetConfigDescription(const char* d)
voidTMVA::Configurable::SetConfigName(const char* n)
virtual voidTObject::SetDrawOption(Option_t* option = "")MENU
static voidTObject::SetDtorOnly(void* obj)
voidTMVA::MethodBase::SetFile(TFile* file)
voidTMVA::MethodBase::SetMethodBaseDir(TDirectory* methodDir)
voidTMVA::MethodBase::SetMethodDir(TDirectory* methodDir)
voidTMVA::MethodBase::SetModelPersistence(Bool_t status)
voidTMVA::Configurable::SetMsgType(TMVA::EMsgType t)
virtual voidTNamed::SetName(const char* name)MENU
virtual voidTNamed::SetNameTitle(const char* name, const char* title)
static voidTObject::SetObjectStat(Bool_t stat)
voidTMVA::Configurable::SetOptions(const TString& s)
voidTMVA::MethodBase::SetSignalReferenceCut(Double_t cut)
voidTMVA::MethodBase::SetSignalReferenceCutOrientation(Double_t cutOrientation)
voidTMVA::MethodBase::SetSilentFile(Bool_t status)
voidSetTestSignalEfficiency(Double_t effS)
voidTMVA::MethodBase::SetTestTime(Double_t testTime)
voidTMVA::MethodBase::SetTestvarName(const TString& v = "")
virtual voidTNamed::SetTitle(const char* title = "")MENU
voidTMVA::MethodBase::SetTrainTime(Double_t trainTime)
virtual voidTMVA::MethodBase::SetTuneParameters(map<TString,Double_t> tuneParameters)
virtual voidTObject::SetUniqueID(UInt_t uid)
voidTMVA::MethodBase::SetupMethod()
virtual voidShowMembers(TMemberInspector& insp) const
virtual Int_tTNamed::Sizeof() const
virtual voidStreamer(TBuffer&)
voidStreamerNVirtual(TBuffer& ClassDef_StreamerNVirtual_b)
virtual voidTObject::SysError(const char* method, const char* msgfmt) const
Bool_tTObject::TestBit(UInt_t f) const
Int_tTObject::TestBits(UInt_t f) const
virtual voidTestClassification()
virtual voidTMVA::MethodBase::TestMulticlass()
virtual voidTMVA::MethodBase::TestRegression(Double_t& bias, Double_t& biasT, Double_t& dev, Double_t& devT, Double_t& rms, Double_t& rmsT, Double_t& mInf, Double_t& mInfT, Double_t& corr, TMVA::Types::ETreeType type)
virtual voidTrain()
boolTMVA::MethodBase::TrainingEnded()
voidTMVA::MethodBase::TrainMethod()
virtual voidTObject::UseCurrentStyle()
virtual voidTObject::Warning(const char* method, const char* msgfmt) const
virtual Int_tTObject::Write(const char* name = 0, Int_t option = 0, Int_t bufsize = 0)
virtual Int_tTObject::Write(const char* name = 0, Int_t option = 0, Int_t bufsize = 0) const
virtual voidTMVA::MethodBase::WriteEvaluationHistosToFile(TMVA::Types::ETreeType treetype)
virtual voidWriteMonitoringHistosToFile() const
voidTMVA::Configurable::WriteOptionsToStream(ostream& o, const TString& prefix) const
voidTMVA::MethodBase::WriteStateToFile() const
protected:
virtual voidTObject::DoError(int level, const char* location, const char* fmt, va_list va) const
voidTMVA::Configurable::EnableLooseOptions(Bool_t b = kTRUE)
virtual voidGetHelpMessage() const
const TString&TMVA::MethodBase::GetInternalVarName(Int_t ivar) const
virtual vector<Double_t>TMVA::MethodBase::GetMvaValues(Long64_t firstEvt = 0, Long64_t lastEvt = -1, Bool_t logProgress = false)
const TString&TMVA::MethodBase::GetOriginalVarName(Int_t ivar) const
const TString&TMVA::Configurable::GetReferenceFile() const
const TString&TMVA::MethodBase::GetWeightFileDir() const
Bool_tTMVA::MethodBase::HasTrainingTree() const
Bool_tTMVA::MethodBase::Help() const
Bool_tTMVA::MethodBase::IgnoreEventsWithNegWeightsInTraining() const
Bool_tTMVA::MethodBase::IsConstructedFromWeightFile() const
Bool_tTMVA::MethodBase::IsNormalised() const
Bool_tTMVA::Configurable::LooseOptionCheckingEnabled() const
virtual voidMakeClassSpecific(ostream&, const TString&) const
virtual voidTMVA::MethodBase::MakeClassSpecificHeader(ostream&, const TString& = "") const
voidTObject::MakeZombie()
voidTMVA::MethodBase::NoErrorCalc(Double_t*const err, Double_t*const errUpper)
voidTMVA::Configurable::ResetSetFlag()
voidTMVA::MethodBase::SetNormalised(Bool_t norm)
voidTMVA::MethodBase::SetWeightFileDir(TString fileDir)
voidTMVA::MethodBase::SetWeightFileName(TString)
voidTMVA::MethodBase::Statistics(TMVA::Types::ETreeType treeType, const TString& theVarName, Double_t&, Double_t&, Double_t&, Double_t&, Double_t&, Double_t&)
Bool_tTMVA::MethodBase::TxtWeightsOnly() const
Bool_tTMVA::MethodBase::Verbose() const
voidTMVA::Configurable::WriteOptionsReferenceToFile()
private:
voidCreateVariablePDFs()
voidGetEffsfromPDFs(Double_t* cutMin, Double_t* cutMax, Double_t& effS, Double_t& effB)
voidGetEffsfromSelection(Double_t* cutMin, Double_t* cutMax, Double_t& effS, Double_t& effB)
virtual voidInit()
voidMatchCutsToPars(vector<Double_t>&, Double_t*, Double_t*)
voidMatchCutsToPars(vector<Double_t>&, Double_t**, Double_t**, Int_t ibin)
voidMatchParsToCuts(const vector<Double_t>&, Double_t*, Double_t*)
voidMatchParsToCuts(Double_t*, Double_t*, Double_t*)

Data Members

public:
Bool_tTMVA::MethodBase::fSetupCompletedis method setup
const TMVA::Event*TMVA::MethodBase::fTmpEvent! temporary event when testing on a different DataSet than the own one
static const Double_tfgMaxAbsCutVal
static TObject::(anonymous)TObject::kBitMask
static TObject::EStatusBitsTObject::kCanDelete
static TObject::EStatusBitsTObject::kCannotPick
static TObject::EStatusBitsTObject::kHasUUID
static TObject::EStatusBitsTObject::kInvalidObject
static TObject::(anonymous)TObject::kIsOnHeap
static TObject::EStatusBitsTObject::kIsReferenced
static TObject::EStatusBitsTObject::kMustCleanup
static TObject::EStatusBitsTObject::kNoContextMenu
static TObject::(anonymous)TObject::kNotDeleted
static TObject::EStatusBitsTObject::kObjInCanvas
static TObject::(anonymous)TObject::kOverwrite
static TMVA::MethodBase::EWeightFileTypeTMVA::MethodBase::kROOT
static TObject::(anonymous)TObject::kSingleKey
static TMVA::MethodBase::EWeightFileTypeTMVA::MethodBase::kTEXT
static TObject::(anonymous)TObject::kWriteDelete
static TObject::(anonymous)TObject::kZombie
protected:
TMVA::Types::EAnalysisTypeTMVA::MethodBase::fAnalysisTypemethod-mode : true --> regression, false --> classification
UInt_tTMVA::MethodBase::fBackgroundClassindex of the Background-class
boolTMVA::MethodBase::fExitFromTraining
UInt_tTMVA::MethodBase::fIPyCurrentIter
UInt_tTMVA::MethodBase::fIPyMaxIter
vector<TString>*TMVA::MethodBase::fInputVarsvector of input variables used in MVA
TMVA::IPythonInteractive*TMVA::MethodBase::fInteractive
TMVA::MsgLogger*TMVA::Configurable::fLogger! message logger
vector<Float_t>*TMVA::MethodBase::fMulticlassReturnValholds the return-values for the multiclass classification
TStringTNamed::fNameobject identifier
Int_tTMVA::MethodBase::fNbinsnumber of bins in input variable histograms
Int_tTMVA::MethodBase::fNbinsHnumber of bins in evaluation histograms
Int_tTMVA::MethodBase::fNbinsMVAoutputnumber of bins in MVA output histograms
TMVA::Ranking*TMVA::MethodBase::fRankingpointer to ranking object (created by derived classifiers)
vector<Float_t>*TMVA::MethodBase::fRegressionReturnValholds the return-values for the regression
TMVA::Results*TMVA::MethodBase::fResults
UInt_tTMVA::MethodBase::fSignalClassindex of the Signal-class
TStringTNamed::fTitleobject title
private:
TString*fAllVarsIwhat to do with variables
TMVA::BinarySearchTree*fBinaryTreeB
TMVA::BinarySearchTree*fBinaryTreeS
Double_t**fCutMaxmaximum requirement
Double_t**fCutMinminimum requirement
vector<TMVA::Interval*>fCutRangeallowed ranges for cut optimisation
Double_t*fCutRangeMaxmaximum of allowed cut range
Double_t*fCutRangeMinminimum of allowed cut range
TH1*fEffBvsSLocalintermediate eff. background versus eff signal histo
TMVA::MethodCuts::EEffMethodfEffMethodchosen efficiency calculation method
TStringfEffMethodSchosen efficiency calculation method (string)
Double_tfEffRefreference efficiency
Double_tfEffSMaxused to test optimized signal efficiency
Double_tfEffSMinused to test optimized signal efficiency
TMVA::MethodCuts::EFitMethodTypefFitMethodchosen fit method
TStringfFitMethodSchosen fit method (string)
vector<TMVA::MethodCuts::EFitParameters>*fFitParamsvector for series of fit methods
vector<Double_t>*fMeanBmeans of variables (background)
vector<Double_t>*fMeanSmeans of variables (signal)
Bool_tfNegEffWarningflag risen in case of negative efficiency warning
Int_tfNparnumber of parameters in fit (default: 2*Nvar)
TRandom*fRandomrandom generator for MC optimisation method
vector<Int_t>*fRangeSignused to match cuts to fit parameters (and vice versa)
vector<Double_t>*fRmsBRMSs of variables (background)
vector<Double_t>*fRmsSRMSs of variables (signal)
Double_tfTestSignalEffused to test optimized signal efficiency
Double_t*fTmpCutMaxtemporary maximum requirement
Double_t*fTmpCutMintemporary minimum requirement
vector<TH1*>*fVarHistBreference histograms (background)
vector<TH1*>*fVarHistB_smoothsmoothed reference histograms (background)
vector<TH1*>*fVarHistSreference histograms (signal)
vector<TH1*>*fVarHistS_smoothsmoothed reference histograms (signal)
vector<TMVA::PDF*>*fVarPdfBreference PDFs (background)
vector<TMVA::PDF*>*fVarPdfSreference PDFs (signal)
static TMVA::MethodCuts::EFitParameterskForceMax
static TMVA::MethodCuts::EFitParameterskForceMin
static TMVA::MethodCuts::EFitParameterskForceSmart
static TMVA::MethodCuts::EFitParameterskNotEnforced
static TMVA::MethodCuts::EFitMethodTypekUseEventScan
static TMVA::MethodCuts::EEffMethodkUseEventSelection
static TMVA::MethodCuts::EFitMethodTypekUseGeneticAlgorithm
static TMVA::MethodCuts::EFitMethodTypekUseMinuit
static TMVA::MethodCuts::EFitMethodTypekUseMonteCarlo
static TMVA::MethodCuts::EFitMethodTypekUseMonteCarloEvents
static TMVA::MethodCuts::EEffMethodkUsePDFs
static TMVA::MethodCuts::EFitMethodTypekUseSimulatedAnnealing

Class Charts

Inheritance Chart:
TMVA::IMethod
TObject
TNamed
TMVA::Configurable
TMVA::MethodBase
TMVA::IFitterTarget
TMVA::MethodCuts

Function documentation

MethodCuts(const TString& jobName, const TString& methodTitle, TMVA::DataSetInfo& theData, const TString& theOption = "MC:150:10000:")
MethodCuts* DynamicCast(TMVA::IMethod* method)
 this is a workaround which is necessary since CINT is not capable of handling dynamic casts
{ return dynamic_cast<MethodCuts*>(method); }
virtual ~MethodCuts( void )
Bool_t HasAnalysisType(TMVA::Types::EAnalysisType type, UInt_t numberClasses, UInt_t numberTargets)
void Train( void )
 training method
void AddWeightsXMLTo(void* parent) const
void ReadWeightsFromStream(istream& i)
void ReadWeightsFromXML(void* wghtnode)
Double_t GetMvaValue(Double_t* err = 0, Double_t* errUpper = 0)
 calculate the MVA value (for CUTs this is just a dummy)
void WriteMonitoringHistosToFile( void )
 write method specific histos to target file
void TestClassification()
 test the method
Double_t GetSeparation(TH1* , TH1* ) const
 also overwrite --> not computed for cuts
{ return -1; }
Double_t GetSeparation(TMVA::PDF* = 0, TMVA::PDF* = 0) const
{ return -1; }
Double_t GetSignificance( void )
{ return -1; }
Double_t GetmuTransform(TTree* )
{ return -1; }
Double_t GetEfficiency(const TString& , TMVA::Types::ETreeType , Double_t& )
Double_t GetTrainingEfficiency(const TString& )
Double_t GetRarity(Double_t , TMVA::Types::ESBType ) const
 rarity distributions (signal or background (default) is uniform in [0,1])
{ return 0; }
Double_t ComputeEstimator(vector<Double_t>& )
 accessors for Minuit
Double_t EstimatorFunction(vector<Double_t>& )
Double_t EstimatorFunction(Int_t ievt1, Int_t ievt2)
void SetTestSignalEfficiency(Double_t effS)
{ fTestSignalEff = effS; }
void PrintCuts(Double_t effS) const
 retrieve cut values for given signal efficiency
Double_t GetCuts(Double_t effS, vector<Double_t>& cutMin, vector<Double_t>& cutMax) const
Double_t GetCuts(Double_t effS, Double_t* cutMin, Double_t* cutMax) const
const Ranking* CreateRanking()
 ranking of input variables (not available for cuts)
{ return 0; }
void DeclareOptions()
void ProcessOptions()
void CheckSetup()
 no check of options at this place
{}
void MakeClassSpecific(ostream& , const TString& ) const
 make ROOT-independent C++ class for classifier response (classifier-specific implementation)
void GetHelpMessage() const
 get help message text
void MatchParsToCuts( const std::vector<Double_t>&, Double_t*, Double_t* )
 the definition of fit parameters can be different from the actual
 cut requirements; these functions provide the matching
void MatchParsToCuts(Double_t* , Double_t* , Double_t* )
void MatchCutsToPars(vector<Double_t>& , Double_t* , Double_t* )
void MatchCutsToPars(vector<Double_t>& , Double_t** , Double_t** , Int_t ibin)
void CreateVariablePDFs( void )
 creates PDFs in case these are used to compute efficiencies
 (corresponds to: EffMethod == kUsePDFs)
void GetEffsfromSelection(Double_t* cutMin, Double_t* cutMax, Double_t& effS, Double_t& effB)
 returns signal and background efficiencies for given cuts - using event counting
void Init( void )
 returns signal and background efficiencies for given cuts - using PDFs
 default initialisation method called by all constructors