A++ » TMVA » TMVA::MethodBDT

class TMVA::MethodBDT: public TMVA::MethodBase


MethodBDT

Analysis of Boosted Decision Trees


Function Members (Methods)

public:
virtual~MethodBDT()
voidTObject::AbstractMethod(const char* method) const
voidTMVA::Configurable::AddOptionsXMLTo(void* parent) const
voidTMVA::MethodBase::AddOutput(TMVA::Types::ETreeType type, TMVA::Types::EAnalysisType analysisType)
virtual voidAddWeightsXMLTo(void* parent) const
virtual voidTObject::AppendPad(Option_t* option = "")
TDirectory*TMVA::MethodBase::BaseDir() const
Double_tBoost(vector<const TMVA::Event*>&, TMVA::DecisionTree* dt, UInt_t cls = 0)
virtual voidTObject::Browse(TBrowser* b)
voidTMVA::Configurable::CheckForUnusedOptions() const
virtual voidTMVA::MethodBase::CheckSetup()
static TClass*Class()
virtual const char*TObject::ClassName() const
virtual voidTNamed::Clear(Option_t* option = "")
virtual TObject*TNamed::Clone(const char* newname = "") const
virtual Int_tTNamed::Compare(const TObject* obj) const
TMVA::ConfigurableTMVA::Configurable::Configurable(const TString& theOption = "")
TMVA::ConfigurableTMVA::Configurable::Configurable(const TMVA::Configurable&)
virtual voidTNamed::Copy(TObject& named) const
virtual const TMVA::Ranking*CreateRanking()
TMVA::DataSet*TMVA::MethodBase::Data() const
TMVA::DataSetInfo&TMVA::MethodBase::DataInfo() const
virtual voidDeclareOptions()
virtual voidTObject::Delete(Option_t* option = "")MENU
voidTMVA::MethodBase::DisableWriting(Bool_t setter)
virtual Int_tTObject::DistancetoPrimitive(Int_t px, Int_t py)
Bool_tTMVA::MethodBase::DoMulticlass() const
Bool_tTMVA::MethodBase::DoRegression() const
virtual voidTObject::Draw(Option_t* option = "")
virtual voidTObject::DrawClass() constMENU
virtual TObject*TObject::DrawClone(Option_t* option = "") constMENU
virtual voidTObject::Dump() constMENU
virtual voidTObject::Error(const char* method, const char* msgfmt) const
virtual voidTObject::Execute(const char* method, const char* params, Int_t* error = 0)
virtual voidTObject::Execute(TMethod* method, TObjArray* params, Int_t* error = 0)
virtual voidTObject::ExecuteEvent(Int_t event, Int_t px, Int_t py)
voidTMVA::MethodBase::ExitFromTraining()
virtual voidTObject::Fatal(const char* method, const char* msgfmt) const
virtual voidTNamed::FillBuffer(char*& buffer)
virtual TObject*TObject::FindObject(const char* name) const
virtual TObject*TObject::FindObject(const TObject* obj) const
TMVA::Types::EAnalysisTypeTMVA::MethodBase::GetAnalysisType() const
const vector<double>&GetBoostWeights() const
const char*TMVA::Configurable::GetConfigDescription() const
const char*TMVA::Configurable::GetConfigName() const
UInt_tTMVA::MethodBase::GetCurrentIter()
virtual Option_t*TObject::GetDrawOption() const
static Long_tTObject::GetDtorOnly()
virtual Double_tTMVA::MethodBase::GetEfficiency(const TString&, TMVA::Types::ETreeType, Double_t& err)
const TMVA::Event*TMVA::MethodBase::GetEvent() const
const TMVA::Event*TMVA::MethodBase::GetEvent(const TMVA::Event* ev) const
const TMVA::Event*TMVA::MethodBase::GetEvent(Long64_t ievt) const
const TMVA::Event*TMVA::MethodBase::GetEvent(Long64_t ievt, TMVA::Types::ETreeType type) const
const vector<TMVA::Event*>&TMVA::MethodBase::GetEventCollection(TMVA::Types::ETreeType type)
TFile*TMVA::MethodBase::GetFile() const
const vector<TMVA::DecisionTree*>&GetForest() const
virtual voidGetHelpMessage() const
virtual const char*TObject::GetIconName() const
const TString&TMVA::MethodBase::GetInputLabel(Int_t i) const
const char*TMVA::MethodBase::GetInputTitle(Int_t i) const
const TString&TMVA::MethodBase::GetInputVar(Int_t i) const
TMultiGraph*TMVA::MethodBase::GetInteractiveTrainingError()
const TString&TMVA::MethodBase::GetJobName() const
virtual Double_tTMVA::MethodBase::GetKSTrainingVsTest(Char_t SorB, TString opt = "X")
virtual Double_tTMVA::MethodBase::GetMaximumSignificance(Double_t SignalEvents, Double_t BackgroundEvents, Double_t& optimal_significance_value) const
UInt_tTMVA::MethodBase::GetMaxIter()
Double_tTMVA::MethodBase::GetMean(Int_t ivar) const
const TString&TMVA::MethodBase::GetMethodName() const
TMVA::Types::EMVATMVA::MethodBase::GetMethodType() const
TStringTMVA::MethodBase::GetMethodTypeName() const
virtual vector<Float_t>TMVA::MethodBase::GetMulticlassEfficiency(vector<vector<Float_t> >& purity)
virtual vector<Float_t>TMVA::MethodBase::GetMulticlassTrainingEfficiency(vector<vector<Float_t> >& purity)
virtual const vector<Float_t>&GetMulticlassValues()
virtual Double_tGetMvaValue(Double_t* err = 0, Double_t* errUpper = 0)
virtual const char*TMVA::MethodBase::GetName() const
UInt_tTMVA::MethodBase::GetNEvents() const
UInt_tTMVA::MethodBase::GetNTargets() const
UInt_tGetNTrees() const
UInt_tTMVA::MethodBase::GetNvar() const
UInt_tTMVA::MethodBase::GetNVariables() const
virtual char*TObject::GetObjectInfo(Int_t px, Int_t py) const
static Bool_tTObject::GetObjectStat()
virtual Option_t*TObject::GetOption() const
const TString&TMVA::Configurable::GetOptions() const
virtual Double_tTMVA::MethodBase::GetProba(const TMVA::Event* ev)
virtual Double_tTMVA::MethodBase::GetProba(Double_t mvaVal, Double_t ap_sig)
const TStringTMVA::MethodBase::GetProbaName() const
virtual Double_tTMVA::MethodBase::GetRarity(Double_t mvaVal, TMVA::Types::ESBType reftype = Types::kBackground) const
virtual voidTMVA::MethodBase::GetRegressionDeviation(UInt_t tgtNum, TMVA::Types::ETreeType type, Double_t& stddev, Double_t& stddev90Percent) const
virtual const vector<Float_t>&GetRegressionValues()
Double_tTMVA::MethodBase::GetRMS(Int_t ivar) const
virtual Double_tTMVA::MethodBase::GetROCIntegral(TH1D* histS, TH1D* histB) const
virtual Double_tTMVA::MethodBase::GetROCIntegral(TMVA::PDF* pdfS = 0, TMVA::PDF* pdfB = 0) const
virtual Double_tTMVA::MethodBase::GetSeparation(TH1*, TH1*) const
virtual Double_tTMVA::MethodBase::GetSeparation(TMVA::PDF* pdfS = 0, TMVA::PDF* pdfB = 0) const
Double_tTMVA::MethodBase::GetSignalReferenceCut() const
Double_tTMVA::MethodBase::GetSignalReferenceCutOrientation() const
virtual Double_tTMVA::MethodBase::GetSignificance() const
const TMVA::Event*TMVA::MethodBase::GetTestingEvent(Long64_t ievt) const
Double_tTMVA::MethodBase::GetTestTime() const
const TString&TMVA::MethodBase::GetTestvarName() const
virtual const char*TNamed::GetTitle() const
virtual Double_tTMVA::MethodBase::GetTrainingEfficiency(const TString&)
const TMVA::Event*TMVA::MethodBase::GetTrainingEvent(Long64_t ievt) const
const vector<const TMVA::Event*>&GetTrainingEvents() const
UInt_tTMVA::MethodBase::GetTrainingROOTVersionCode() const
TStringTMVA::MethodBase::GetTrainingROOTVersionString() const
UInt_tTMVA::MethodBase::GetTrainingTMVAVersionCode() const
TStringTMVA::MethodBase::GetTrainingTMVAVersionString() const
Double_tTMVA::MethodBase::GetTrainTime() const
TMVA::TransformationHandler&TMVA::MethodBase::GetTransformationHandler(Bool_t takeReroutedIfAvailable = true)
const TMVA::TransformationHandler&TMVA::MethodBase::GetTransformationHandler(Bool_t takeReroutedIfAvailable = true) const
virtual UInt_tTObject::GetUniqueID() const
vector<Double_t>GetVariableImportance()
Double_tGetVariableImportance(UInt_t ivar)
TStringTMVA::MethodBase::GetWeightFileName() const
Double_tTMVA::MethodBase::GetXmax(Int_t ivar) const
Double_tTMVA::MethodBase::GetXmin(Int_t ivar) const
virtual Bool_tTObject::HandleTimer(TTimer* timer)
virtual Bool_tHasAnalysisType(TMVA::Types::EAnalysisType type, UInt_t numberClasses, UInt_t numberTargets)
virtual ULong_tTNamed::Hash() const
Bool_tTMVA::MethodBase::HasMVAPdfs() const
TMVA::IMethodTMVA::IMethod::IMethod()
TMVA::IMethodTMVA::IMethod::IMethod(const TMVA::IMethod&)
virtual voidTObject::Info(const char* method, const char* msgfmt) const
virtual Bool_tTObject::InheritsFrom(const char* classname) const
virtual Bool_tTObject::InheritsFrom(const TClass* cl) const
voidInitEventSample()
voidTMVA::MethodBase::InitIPythonInteractive()
virtual voidTObject::Inspect() constMENU
voidTObject::InvertBit(UInt_t f)
virtual TClass*IsA() const
virtual Bool_tTObject::IsEqual(const TObject* obj) const
virtual Bool_tTObject::IsFolder() const
Bool_tTMVA::MethodBase::IsModelPersistence()
Bool_tTObject::IsOnHeap() const
virtual Bool_tTMVA::MethodBase::IsSignalLike()
virtual Bool_tTMVA::MethodBase::IsSignalLike(Double_t mvaVal)
Bool_tTMVA::MethodBase::IsSilentFile()
virtual Bool_tTNamed::IsSortable() const
Bool_tTObject::IsZombie() const
TMVA::MsgLogger&TMVA::Configurable::Log() const
virtual voidTNamed::ls(Option_t* option = "") const
virtual voidTMVA::MethodBase::MakeClass(const TString& classFileName = TString("")) const
voidMakeClassInstantiateNode(TMVA::DecisionTreeNode* n, ostream& fout, const TString& className) const
virtual voidMakeClassSpecific(ostream&, const TString&) const
virtual voidMakeClassSpecificHeader(ostream&, const TString&) const
voidTObject::MayNotUse(const char* method) const
TMVA::MethodBaseTMVA::MethodBase::MethodBase(const TMVA::MethodBase&)
TMVA::MethodBaseTMVA::MethodBase::MethodBase(TMVA::Types::EMVA methodType, TMVA::DataSetInfo& dsi, const TString& weightFile)
TMVA::MethodBaseTMVA::MethodBase::MethodBase(const TString& jobName, TMVA::Types::EMVA methodType, const TString& methodTitle, TMVA::DataSetInfo& dsi, const TString& theOption = "")
TDirectory*TMVA::MethodBase::MethodBaseDir() const
TMVA::MethodBDTMethodBDT(const TMVA::MethodBDT&)
TMVA::MethodBDTMethodBDT(TMVA::DataSetInfo& theData, const TString& theWeightFile)
TMVA::MethodBDTMethodBDT(const TString& jobName, const TString& methodTitle, TMVA::DataSetInfo& theData, const TString& theOption = "")
virtual Bool_tTObject::Notify()
voidTObject::Obsolete(const char* method, const char* asOfVers, const char* removedFromVers) const
voidTObject::operator delete(void* ptr)
voidTObject::operator delete(void* ptr, void* vp)
voidTObject::operator delete[](void* ptr)
voidTObject::operator delete[](void* ptr, void* vp)
void*TObject::operator new(size_t sz)
void*TObject::operator new(size_t sz, void* vp)
void*TObject::operator new[](size_t sz)
void*TObject::operator new[](size_t sz, void* vp)
TMVA::MethodBDT&operator=(const TMVA::MethodBDT&)
virtual map<TString,Double_t>OptimizeTuningParameters(TString fomType = "ROCIntegral", TString fitType = "FitGA")
virtual voidTObject::Paint(Option_t* option = "")
virtual voidTMVA::Configurable::ParseOptions()
virtual voidTObject::Pop()
virtual voidTNamed::Print(Option_t* option = "") const
virtual voidTMVA::MethodBase::PrintHelpMessage() const
voidTMVA::Configurable::PrintOptions() const
virtual voidProcessOptions()
voidTMVA::MethodBase::ProcessSetup()
virtual Int_tTObject::Read(const char* name)
voidTMVA::Configurable::ReadOptionsFromStream(istream& istr)
voidTMVA::Configurable::ReadOptionsFromXML(void* node)
voidTMVA::MethodBase::ReadStateFromFile()
voidTMVA::MethodBase::ReadStateFromStream(istream& tf)
voidTMVA::MethodBase::ReadStateFromStream(TFile& rf)
voidTMVA::MethodBase::ReadStateFromXMLString(const char* xmlstr)
virtual voidReadWeightsFromStream(istream& istr)
virtual voidReadWeightsFromXML(void* parent)
virtual voidTObject::RecursiveRemove(TObject* obj)
voidTMVA::MethodBase::RerouteTransformationHandler(TMVA::TransformationHandler* fTargetTransformation)
virtual voidReset()
voidTObject::ResetBit(UInt_t f)
virtual voidTObject::SaveAs(const char* filename = "", Option_t* option = "") constMENU
virtual voidTObject::SavePrimitive(ostream& out, Option_t* option = "")
voidSetAdaBoostBeta(Double_t b)
virtual voidTMVA::MethodBase::SetAnalysisType(TMVA::Types::EAnalysisType type)
voidSetBaggedSampleFraction(Double_t f)
voidTMVA::MethodBase::SetBaseDir(TDirectory* methodDir)
voidTObject::SetBit(UInt_t f)
voidTObject::SetBit(UInt_t f, Bool_t set)
voidTMVA::Configurable::SetConfigDescription(const char* d)
voidTMVA::Configurable::SetConfigName(const char* n)
virtual voidTObject::SetDrawOption(Option_t* option = "")MENU
static voidTObject::SetDtorOnly(void* obj)
voidTMVA::MethodBase::SetFile(TFile* file)
voidSetMaxDepth(Int_t d)
voidTMVA::MethodBase::SetMethodBaseDir(TDirectory* methodDir)
voidTMVA::MethodBase::SetMethodDir(TDirectory* methodDir)
voidSetMinNodeSize(Double_t sizeInPercent)
voidSetMinNodeSize(TString sizeInPercent)
voidTMVA::MethodBase::SetModelPersistence(Bool_t status)
voidTMVA::Configurable::SetMsgType(TMVA::EMsgType t)
virtual voidTNamed::SetName(const char* name)MENU
virtual voidTNamed::SetNameTitle(const char* name, const char* title)
voidSetNodePurityLimit(Double_t l)
voidSetNTrees(Int_t d)
static voidTObject::SetObjectStat(Bool_t stat)
voidTMVA::Configurable::SetOptions(const TString& s)
voidSetShrinkage(Double_t s)
voidTMVA::MethodBase::SetSignalReferenceCut(Double_t cut)
voidTMVA::MethodBase::SetSignalReferenceCutOrientation(Double_t cutOrientation)
voidTMVA::MethodBase::SetSilentFile(Bool_t status)
voidTMVA::MethodBase::SetTestTime(Double_t testTime)
voidTMVA::MethodBase::SetTestvarName(const TString& v = "")
virtual voidTNamed::SetTitle(const char* title = "")MENU
voidTMVA::MethodBase::SetTrainTime(Double_t trainTime)
virtual voidSetTuneParameters(map<TString,Double_t> tuneParameters)
virtual voidTObject::SetUniqueID(UInt_t uid)
voidTMVA::MethodBase::SetupMethod()
voidSetUseNvars(Int_t n)
virtual voidShowMembers(TMemberInspector& insp) const
virtual Int_tTNamed::Sizeof() const
virtual voidStreamer(TBuffer&)
voidStreamerNVirtual(TBuffer& ClassDef_StreamerNVirtual_b)
virtual voidTObject::SysError(const char* method, const char* msgfmt) const
Bool_tTObject::TestBit(UInt_t f) const
Int_tTObject::TestBits(UInt_t f) const
virtual voidTMVA::MethodBase::TestClassification()
virtual voidTMVA::MethodBase::TestMulticlass()
virtual voidTMVA::MethodBase::TestRegression(Double_t& bias, Double_t& biasT, Double_t& dev, Double_t& devT, Double_t& rms, Double_t& rmsT, Double_t& mInf, Double_t& mInfT, Double_t& corr, TMVA::Types::ETreeType type)
Double_tTestTreeQuality(TMVA::DecisionTree* dt)
virtual voidTrain()
boolTMVA::MethodBase::TrainingEnded()
voidTMVA::MethodBase::TrainMethod()
virtual voidTObject::UseCurrentStyle()
virtual voidTObject::Warning(const char* method, const char* msgfmt) const
virtual Int_tTObject::Write(const char* name = 0, Int_t option = 0, Int_t bufsize = 0)
virtual Int_tTObject::Write(const char* name = 0, Int_t option = 0, Int_t bufsize = 0) const
virtual voidTMVA::MethodBase::WriteEvaluationHistosToFile(TMVA::Types::ETreeType treetype)
virtual voidWriteMonitoringHistosToFile() const
voidTMVA::Configurable::WriteOptionsToStream(ostream& o, const TString& prefix) const
voidTMVA::MethodBase::WriteStateToFile() const
protected:
virtual voidDeclareCompatibilityOptions()
virtual voidTObject::DoError(int level, const char* location, const char* fmt, va_list va) const
voidTMVA::Configurable::EnableLooseOptions(Bool_t b = kTRUE)
const TString&TMVA::MethodBase::GetInternalVarName(Int_t ivar) const
virtual vector<Double_t>TMVA::MethodBase::GetMvaValues(Long64_t firstEvt = 0, Long64_t lastEvt = -1, Bool_t logProgress = false)
const TString&TMVA::MethodBase::GetOriginalVarName(Int_t ivar) const
const TString&TMVA::Configurable::GetReferenceFile() const
const TString&TMVA::MethodBase::GetWeightFileDir() const
Bool_tTMVA::MethodBase::HasTrainingTree() const
Bool_tTMVA::MethodBase::Help() const
Bool_tTMVA::MethodBase::IgnoreEventsWithNegWeightsInTraining() const
Bool_tTMVA::MethodBase::IsConstructedFromWeightFile() const
Bool_tTMVA::MethodBase::IsNormalised() const
Bool_tTMVA::Configurable::LooseOptionCheckingEnabled() const
voidTObject::MakeZombie()
voidTMVA::MethodBase::NoErrorCalc(Double_t*const err, Double_t*const errUpper)
voidTMVA::Configurable::ResetSetFlag()
voidTMVA::MethodBase::SetNormalised(Bool_t norm)
voidTMVA::MethodBase::SetWeightFileDir(TString fileDir)
voidTMVA::MethodBase::SetWeightFileName(TString)
voidTMVA::MethodBase::Statistics(TMVA::Types::ETreeType treeType, const TString& theVarName, Double_t&, Double_t&, Double_t&, Double_t&, Double_t&, Double_t&)
Bool_tTMVA::MethodBase::TxtWeightsOnly() const
Bool_tTMVA::MethodBase::Verbose() const
voidTMVA::Configurable::WriteOptionsReferenceToFile()
private:
Double_tAdaBoost(vector<const TMVA::Event*>&, TMVA::DecisionTree* dt)
Double_tAdaBoostR2(vector<const TMVA::Event*>&, TMVA::DecisionTree* dt)
Double_tAdaCost(vector<const TMVA::Event*>&, TMVA::DecisionTree* dt)
Double_tApplyPreselectionCuts(const TMVA::Event* ev)
Double_tBagging()
voidBoostMonitor(Int_t iTree)
voidDeterminePreselectionCuts(const vector<const TMVA::Event*>& eventSample)
voidGetBaggedSubSample(vector<const TMVA::Event*>&)
Double_tGetGradBoostMVA(const TMVA::Event* e, UInt_t nTrees)
Double_tGetMvaValue(Double_t* err, Double_t* errUpper, UInt_t useNTrees)
Double_tGradBoost(vector<const TMVA::Event*>&, TMVA::DecisionTree* dt, UInt_t cls = 0)
Double_tGradBoostRegression(vector<const TMVA::Event*>&, TMVA::DecisionTree* dt)
virtual voidInit()
voidInitGradBoost(vector<const TMVA::Event*>&)
voidPreProcessNegativeEventWeights()
Double_tPrivateGetMvaValue(const TMVA::Event* ev, Double_t* err = 0, Double_t* errUpper = 0, UInt_t useNTrees = 0)
Double_tRegBoost(vector<const TMVA::Event*>&, TMVA::DecisionTree* dt)
voidUpdateTargets(vector<const TMVA::Event*>&, UInt_t cls = 0)
voidUpdateTargetsRegression(vector<const TMVA::Event*>&, Bool_t first = kFALSE)

Data Members

public:
Bool_tTMVA::MethodBase::fSetupCompletedis method setup
const TMVA::Event*TMVA::MethodBase::fTmpEvent! temporary event when testing on a different DataSet than the own one
static TObject::(anonymous)TObject::kBitMask
static TObject::EStatusBitsTObject::kCanDelete
static TObject::EStatusBitsTObject::kCannotPick
static TObject::EStatusBitsTObject::kHasUUID
static TObject::EStatusBitsTObject::kInvalidObject
static TObject::(anonymous)TObject::kIsOnHeap
static TObject::EStatusBitsTObject::kIsReferenced
static TObject::EStatusBitsTObject::kMustCleanup
static TObject::EStatusBitsTObject::kNoContextMenu
static TObject::(anonymous)TObject::kNotDeleted
static TObject::EStatusBitsTObject::kObjInCanvas
static TObject::(anonymous)TObject::kOverwrite
static TMVA::MethodBase::EWeightFileTypeTMVA::MethodBase::kROOT
static TObject::(anonymous)TObject::kSingleKey
static TMVA::MethodBase::EWeightFileTypeTMVA::MethodBase::kTEXT
static TObject::(anonymous)TObject::kWriteDelete
static TObject::(anonymous)TObject::kZombie
protected:
TMVA::Types::EAnalysisTypeTMVA::MethodBase::fAnalysisTypemethod-mode : true --> regression, false --> classification
UInt_tTMVA::MethodBase::fBackgroundClassindex of the Background-class
boolTMVA::MethodBase::fExitFromTraining
UInt_tTMVA::MethodBase::fIPyCurrentIter
UInt_tTMVA::MethodBase::fIPyMaxIter
vector<TString>*TMVA::MethodBase::fInputVarsvector of input variables used in MVA
TMVA::IPythonInteractive*TMVA::MethodBase::fInteractive
TMVA::MsgLogger*TMVA::Configurable::fLogger! message logger
vector<Float_t>*TMVA::MethodBase::fMulticlassReturnValholds the return-values for the multiclass classification
TStringTNamed::fNameobject identifier
Int_tTMVA::MethodBase::fNbinsnumber of bins in input variable histograms
Int_tTMVA::MethodBase::fNbinsHnumber of bins in evaluation histograms
Int_tTMVA::MethodBase::fNbinsMVAoutputnumber of bins in MVA output histograms
TMVA::Ranking*TMVA::MethodBase::fRankingpointer to ranking object (created by derived classifiers)
vector<Float_t>*TMVA::MethodBase::fRegressionReturnValholds the return-values for the regression
TMVA::Results*TMVA::MethodBase::fResults
UInt_tTMVA::MethodBase::fSignalClassindex of the Signal-class
TStringTNamed::fTitleobject title
private:
Double_tfAdaBoostBetabeta parameter for AdaBoost algorithm
TStringfAdaBoostR2Lossloss type used in AdaBoostR2 (Linear,Quadratic or Exponential)
Bool_tfAutomaticuse user given prune strength or automatically determined one using a validation sample
Bool_tfBaggedBoostturn bagging in combination with boost on/off
Bool_tfBaggedGradBoostturn bagging in combination with grad boost on/off
Double_tfBaggedSampleFractionrelative size of bagged event sample to original sample size
TStringfBoostTypestring specifying the boost type
Double_tfBoostWeightntuple var: boost weight
vector<double>fBoostWeightsthe weights applied in the individual boosts
Double_tfCbbCost factor
Double_tfCssCost factor
Double_tfCtb_ssCost factor
Double_tfCts_sbCost factor
Bool_tfDoBoostMonitorcreate control plot with ROC integral vs tree number
Bool_tfDoPreselectiondo or do not perform automatic pre-selection of 100% eff. cuts
Double_tfErrorFractionntuple var: misclassification error fraction
vector<const TMVA::Event*>fEventSamplethe training events
Double_tfFValidationEventsfraction of events to use for pruning
vector<TMVA::DecisionTree*>fForestthe collection of decision trees
vector<Double_t>fHighBkgCut
vector<Double_t>fHighSigCut
Bool_tfHistoricBoolhistoric variable, only needed for "CompatibilityOptions"
Double_tfHuberQuantilethe option string determining the quantile for the Huber Loss Function
Int_tfITreentuple var: ith tree
Bool_tfInverseBoostNegWeightsboost ev. with neg. weights with 1/boostweight rathre than boostweight
vector<Bool_t>fIsHighBkgCut
vector<Bool_t>fIsHighSigCut
vector<Bool_t>fIsLowBkgCut
vector<Bool_t>fIsLowSigCut
map<const TMVA::Event*,TMVA::LossFunctionEventInfo>fLossFunctionEventInfomap event to true value, predicted value, and weight
vector<Double_t>fLowBkgCut
vector<Double_t>fLowSigCut
UInt_tfMaxDepthmax depth
Double_tfMinLinCorrForFisherthe minimum linear correlation between two variables demanded for use in fisher criterium in node splitting
Int_tfMinNodeEventsmin number of events in node
Float_tfMinNodeSizemin percentage of training events in node
TStringfMinNodeSizeSstring containing min percentage of training events in node
TTree*fMonitorNtuplemonitoring ntuple
Int_tfNCutsgrid used in cut applied in node splitting
UInt_tfNNodesMaxmax # of nodes
Int_tfNTreesnumber of decision trees requested
TStringfNegWeightTreatmentvariable that holds the option of how to treat negative event weights in training
Bool_tfNoNegWeightsInTrainingignore negative event weights in the training
Double_tfNodePurityLimitpurity limit for sig/bkg nodes
Bool_tfPairNegWeightsGlobalpair ev. with neg. and pos. weights in traning sample and "annihilate" them
TMVA::DecisionTree::EPruneMethodfPruneMethodmethod used for prunig
TStringfPruneMethodSprune method option String
Double_tfPruneStrengtha parameter to set the "amount" of pruning..needs to be adjusted
Bool_tfRandomisedTreeschoose a random subset of possible cut variables at each node during training
TMVA::LossFunctionBDT*fRegressionLossFunctionBDTG
TStringfRegressionLossFunctionBDTGSthe option string determining the loss function for BDT regression
map<const TMVA::Event*,vector<double> >fResidualsindividual event residuals for gradient boost
TMVA::SeparationBase*fSepTypethe separation used in node splitting
TStringfSepTypeSthe separation (option string) used in node splitting
Double_tfShrinkagelearning rate for gradient boost;
Double_tfSigToBkgFractionSignal to Background fraction assumed during training
Bool_tfSkipNormalizationtrue for skipping normalization at initialization of trees
vector<const TMVA::Event*>fSubSamplesubsample for bagged grad boost
vector<const TMVA::Event*>*fTrainSamplepointer to sample actually used in training (fEventSample or fSubSample) for example
Bool_tfTrainWithNegWeightsyes there are negative event weights and we don't ignore them
Bool_tfUseExclusiveVarsindividual variables already used in fisher criterium are not anymore analysed individually for node splitting
Bool_tfUseFisherCutsuse multivariate splits using the Fisher criterium
UInt_tfUseNTrainEventsnumber of randomly picked training events used in randomised (and bagged) trees
UInt_tfUseNvarsthe number of variables used in the randomised tree splitting
Bool_tfUsePoissonNvarsuse "fUseNvars" not as fixed number but as mean of a possion distr. in each split
Bool_tfUseYesNoLeafuse sig or bkg classification in leave nodes or sig/bkg
vector<const TMVA::Event*>fValidationSamplethe Validation events
vector<Double_t>fVariableImportancethe relative importance of the different variables
static const Int_tfgDebugLeveldebug level determining some printout/control plots etc.

Class Charts

Inheritance Chart:
TMVA::IMethod
TObject
TNamed
TMVA::Configurable
TMVA::MethodBase
TMVA::MethodBDT

Function documentation

const std::vector<TMVA::DecisionTree*>& GetForest() const
{ return fForest; }
const std::vector<const TMVA::Event*> & GetTrainingEvents() const
{ return fEventSample; }
const std::vector<double>& GetBoostWeights() const
{ return fBoostWeights; }
MethodBDT(const TString& jobName, const TString& methodTitle, TMVA::DataSetInfo& theData, const TString& theOption = "")
 constructor for training and reading
virtual ~MethodBDT( void )
 constructor for calculating BDT-MVA using previously generatad decision trees
Bool_t HasAnalysisType(TMVA::Types::EAnalysisType type, UInt_t numberClasses, UInt_t numberTargets)
void InitEventSample()
 write all Events from the Tree into a vector of Events, that are
 more easily manipulated
std::map<TString,Double_t> OptimizeTuningParameters(TString fomType = "ROCIntegral", TString fitType = "FitGA")
 optimize tuning parameters
void SetTuneParameters(map<TString,Double_t> tuneParameters)
void Train( void )
 training method
void Reset( void )
 revoke training
void AddWeightsXMLTo(void* parent) const
 write weights to file
void ReadWeightsFromStream(istream& istr)
 read weights from file
void ReadWeightsFromXML(void* parent)
void WriteMonitoringHistosToFile( void )
 write method specific histos to target file
Double_t GetMvaValue(Double_t* err = 0, Double_t* errUpper = 0)
 calculate the MVA value
UInt_t GetNTrees() const
 get the actual forest size (might be less than fNTrees, the requested one, if boosting is stopped early
{return fForest.size();}
Double_t GetMvaValue(Double_t* err, Double_t* errUpper, UInt_t useNTrees)
Double_t PrivateGetMvaValue(const TMVA::Event* ev, Double_t* err = 0, Double_t* errUpper = 0, UInt_t useNTrees = 0)
void BoostMonitor(Int_t iTree)
const std::vector<Float_t>& GetMulticlassValues()
const std::vector<Float_t>& GetRegressionValues()
 regression response
Double_t Boost(vector<const TMVA::Event*>& , TMVA::DecisionTree* dt, UInt_t cls = 0)
 apply the boost algorithm to a tree in the collection
const Ranking* CreateRanking()
 ranking of input variables
void DeclareOptions()
 the option handling methods
void ProcessOptions()
void SetMaxDepth(Int_t d)
{fMaxDepth = d;}
void SetMinNodeSize(Double_t sizeInPercent)
void SetMinNodeSize(TString sizeInPercent)
void SetNTrees(Int_t d)
{fNTrees = d;}
void SetAdaBoostBeta(Double_t b)
void SetNodePurityLimit(Double_t l)
void SetShrinkage(Double_t s)
{fShrinkage = s;}
void SetUseNvars(Int_t n)
{fUseNvars = n;}
void SetBaggedSampleFraction(Double_t f)
std::vector<Double_t> GetVariableImportance()
return the individual relative variable importance
Double_t GetVariableImportance(UInt_t ivar)
Double_t TestTreeQuality(TMVA::DecisionTree* dt)
void MakeClassSpecific(ostream& , const TString& ) const
 make ROOT-independent C++ class for classifier response (classifier-specific implementation)
void MakeClassSpecificHeader(ostream& , const TString& ) const
 header and auxiliary classes
void MakeClassInstantiateNode(TMVA::DecisionTreeNode* n, ostream& fout, const TString& className) const
void DeclareCompatibilityOptions()
void Init( void )
 Init used in the various constructors
void PreProcessNegativeEventWeights()
Double_t AdaBoost(vector<const TMVA::Event*>& , TMVA::DecisionTree* dt)
 boosting algorithm (adaptive boosting)
Double_t AdaCost(vector<const TMVA::Event*>& , TMVA::DecisionTree* dt)
 boosting algorithm (adaptive boosting with cost matrix)
Double_t Bagging()
 boosting as a random re-weighting
Double_t RegBoost(vector<const TMVA::Event*>& , TMVA::DecisionTree* dt)
 boosting special for regression
Double_t AdaBoostR2(vector<const TMVA::Event*>& , TMVA::DecisionTree* dt)
 adaboost adapted to regression
Double_t GradBoost(vector<const TMVA::Event*>& , TMVA::DecisionTree* dt, UInt_t cls = 0)
 binomial likelihood gradient boost for classification
 (see Friedman: "Greedy Function Approximation: a Gradient Boosting Machine"
 Technical report, Dept. of Statistics, Stanford University)
Double_t GradBoostRegression(vector<const TMVA::Event*>& , TMVA::DecisionTree* dt)
void InitGradBoost(vector<const TMVA::Event*>& )
void UpdateTargets(vector<const TMVA::Event*>& , UInt_t cls = 0)
void UpdateTargetsRegression(vector<const TMVA::Event*>& , Bool_t first = kFALSE)
Double_t GetGradBoostMVA(const TMVA::Event* e, UInt_t nTrees)
void GetBaggedSubSample(vector<const TMVA::Event*>& )
void DeterminePreselectionCuts(const vector<const TMVA::Event*>& eventSample)
Double_t ApplyPreselectionCuts(const TMVA::Event* ev)