TMatrixDSymEigen Eigenvalues and eigenvectors of a real symmetric matrix.
virtual | ~TMatrixDSymEigen() |
static TClass* | Class() |
const TVectorD& | GetEigenValues() const |
const TMatrixD& | GetEigenVectors() const |
virtual TClass* | IsA() const |
TMatrixDSymEigen& | operator=(const TMatrixDSymEigen& source) |
virtual void | ShowMembers(TMemberInspector& insp) const |
virtual void | Streamer(TBuffer&) |
void | StreamerNVirtual(TBuffer& ClassDef_StreamerNVirtual_b) |
TMatrixDSymEigen() | |
TMatrixDSymEigen(const TMatrixDSym& a) | |
TMatrixDSymEigen(const TMatrixDSymEigen& another) |
static void | MakeEigenVectors(TMatrixD& v, TVectorD& d, TVectorD& e) |
static void | MakeTridiagonal(TMatrixD& v, TVectorD& d, TVectorD& e) |
static TMatrixDSymEigen::(anonymous) | kWorkMax |
Inheritance Chart: | |||||
|
If matrix A has shape (rowLwb,rowUpb,rowLwb,rowUpb), then each eigen-vector must have an index running between (rowLwb,rowUpb) . For convenience, the column index of the eigen-vector matrix also runs from rowLwb to rowUpb so that the returned matrix has also index/shape (rowLwb,rowUpb,rowLwb,rowUpb) . The same is true for the eigen-value vector .
{ return fEigenVectors; }