A++ » TMVA » TMVA::RuleFit

class TMVA::RuleFit

Function Members (Methods)

public:
virtual~RuleFit()
voidBoost(TMVA::DecisionTree* dt)
voidBuildTree(TMVA::DecisionTree* dt)
voidCalcImportance()
Double_tCalcWeightSum(const vector<const TMVA::Event*>* events, UInt_t neve = 0)
static TClass*Class()
Double_tEvalEvent(const TMVA::Event& e)
voidFillCorr(TH2F* h2, const TMVA::Rule* rule, Int_t v1, Int_t v2)
voidFillCut(TH2F* h2, const TMVA::Rule* rule, Int_t vind)
voidFillLin(TH2F* h2, Int_t vind)
voidFillVisHistCorr(const TMVA::Rule* rule, vector<TH2F*>& hlist)
voidFillVisHistCut(const TMVA::Rule* rule, vector<TH2F*>& hlist)
voidFitCoefficients()
voidForestStatistics()
Bool_tGetCorrVars(TString& title, TString& var1, TString& var2)
const vector<const TMVA::DecisionTree*>&GetForest() const
const TMVA::MethodBase*GetMethodBase() const
const TMVA::MethodRuleFit*GetMethodRuleFit() const
Double_tGetNEveEff() const
UInt_tGetNTreeSample() const
voidGetRndmSampleEvents(vector<const TMVA::Event*>& evevec, UInt_t nevents)
const TMVA::RuleEnsemble&GetRuleEnsemble() const
TMVA::RuleEnsemble*GetRuleEnsemblePtr()
const TMVA::RuleFitParams&GetRuleFitParams() const
TMVA::RuleFitParams*GetRuleFitParamsPtr()
const TMVA::Event*GetTrainingEvent(UInt_t i) const
const vector<const TMVA::Event*>&GetTrainingEvents() const
Double_tGetTrainingEventWeight(UInt_t i) const
voidInitialize(const TMVA::MethodBase* rfbase)
voidInitNEveEff()
voidInitPtrs(const TMVA::MethodBase* rfbase)
virtual TClass*IsA() const
voidMakeDebugHists()
voidMakeForest()
voidMakeVisHists()
voidNormVisHists(vector<TH2F*>& hlist)
TMVA::RuleFit&operator=(const TMVA::RuleFit&)
voidReshuffleEvents()
voidRestoreEventWeights()
TMVA::RuleFitRuleFit()
TMVA::RuleFitRuleFit(const TMVA::MethodBase* rfbase)
voidSaveEventWeights()
voidSetGDNPathSteps(Int_t n = 100)
voidSetGDPathStep(Double_t s = 0.01)
voidSetGDTau(Double_t t = 0.)
voidSetImportanceCut(Double_t minimp = 0)
voidSetMethodBase(const TMVA::MethodBase* rfbase)
voidSetModelFull()
voidSetModelLinear()
voidSetModelRules()
voidSetMsgType(TMVA::EMsgType t)
voidSetRuleMinDist(Double_t d)
voidSetTrainingEvents(const vector<const TMVA::Event*>& el)
voidSetVisHistsUseImp(Bool_t f)
virtual voidShowMembers(TMemberInspector& insp) const
virtual voidStreamer(TBuffer&)
voidStreamerNVirtual(TBuffer& ClassDef_StreamerNVirtual_b)
voidUseCoefficientsVisHists()
voidUseImportanceVisHists()
private:
voidCopy(const TMVA::RuleFit& other)
TMVA::MsgLogger&Log() const
TMVA::RuleFitRuleFit(const TMVA::RuleFit& other)

Data Members

private:
vector<Double_t>fEventWeightsoriginal weights of the events - follows fTrainingEvents
vector<const TMVA::DecisionTree*>fForestthe input forest of decision trees
TMVA::MsgLogger*fLoggermessage logger
const TMVA::MethodBase*fMethodBasepointer the method base which initialized this RuleFit instance
const TMVA::MethodRuleFit*fMethodRuleFitpointer the method which initialized this RuleFit instance
Double_tfNEveEffTrainreweighted number of events = sum(wi)
UInt_tfNTreeSamplenumber of events in sub sample = frac*neve
TMVA::RuleEnsemblefRuleEnsemblethe ensemble of rules
TMVA::RuleFitParamsfRuleFitParamsfit rule parameters
vector<const TMVA::Event*>fTrainingEventsall training events
vector<const TMVA::Event*>fTrainingEventsRndmidem, but randomly shuffled
Bool_tfVisHistsUseImpif true, use importance as weight; else coef in vis hists
static const Int_trandSEEDset to 1 for debugging purposes or to zero for random seeds

Class Charts

Inheritance Chart:
TMVA::RuleFit

Function documentation

RuleFit(const TMVA::MethodBase* rfbase)
 main constructor
RuleFit(const TMVA::RuleFit& other)
 empty constructor
virtual ~RuleFit( void )
void InitNEveEff()
void InitPtrs(const TMVA::MethodBase* rfbase)
void Initialize(const TMVA::MethodBase* rfbase)
void SetMsgType(TMVA::EMsgType t)
void SetTrainingEvents(const vector<const TMVA::Event*>& el)
void ReshuffleEvents()
{ std::random_shuffle(fTrainingEventsRndm.begin(),fTrainingEventsRndm.end()); }
void SetMethodBase(const TMVA::MethodBase* rfbase)
void MakeForest()
 make the forest of trees for rule generation
void BuildTree(TMVA::DecisionTree* dt)
 build a tree
void SaveEventWeights()
 save event weights
void RestoreEventWeights()
 restore saved event weights
void Boost(TMVA::DecisionTree* dt)
 boost events based on the given tree
void ForestStatistics()
 calculate and print some statistics on the given forest
Double_t EvalEvent(const TMVA::Event& e)
 calculate the discriminating variable for the given event
Double_t CalcWeightSum(const vector<const TMVA::Event*>* events, UInt_t neve = 0)
 calculate sum of
void FitCoefficients()
 do the fitting of the coefficients
void CalcImportance()
 calculate variable and rule importance from a set of events
void SetModelLinear()
 set usage of linear term
void SetModelRules()
 set usage of rules
void SetModelFull()
 set usage of linear term
void SetImportanceCut(Double_t minimp = 0)
 set minimum importance allowed
void SetRuleMinDist(Double_t d)
 set minimum rule distance - see RuleEnsemble
void SetGDTau(Double_t t = 0.)
 set path related parameters
void SetGDPathStep(Double_t s = 0.01)
void SetGDNPathSteps(Int_t n = 100)
 make visualization histograms
void SetVisHistsUseImp(Bool_t f)
void UseImportanceVisHists()
void UseCoefficientsVisHists()
void MakeVisHists()
void FillVisHistCut(const TMVA::Rule* rule, vector<TH2F*>& hlist)
void FillVisHistCorr(const TMVA::Rule* rule, vector<TH2F*>& hlist)
void FillCut(TH2F* h2, const TMVA::Rule* rule, Int_t vind)
void FillLin(TH2F* h2, Int_t vind)
void FillCorr(TH2F* h2, const TMVA::Rule* rule, Int_t v1, Int_t v2)
void NormVisHists(vector<TH2F*>& hlist)
void MakeDebugHists()
Bool_t GetCorrVars(TString& title, TString& var1, TString& var2)
 accessors
UInt_t GetNTreeSample() const
{ return fNTreeSample; }
Double_t GetNEveEff() const
{ return fNEveEffTrain; }
const Event* GetTrainingEvent(UInt_t i) const
{ return static_cast< const Event *>(fTrainingEvents[i]); }
Double_t GetTrainingEventWeight(UInt_t i) const
{ return fTrainingEvents[i]->GetWeight(); }
const std::vector< const TMVA::Event * > & GetTrainingEvents() const
      const Event*  GetTrainingEvent(UInt_t i, UInt_t isub)  const { return &(fTrainingEvents[fSubsampleEvents[isub]])[i]; }
{ return fTrainingEvents; }
void GetRndmSampleEvents(vector<const TMVA::Event*>& evevec, UInt_t nevents)
      const std::vector< Int_t >               & GetSubsampleEvents() const { return fSubsampleEvents; }
      void  GetSubsampleEvents(Int_t sub, UInt_t & ibeg, UInt_t & iend) const;
const std::vector< const TMVA::DecisionTree *> & GetForest() const
{ return fForest; }
const RuleEnsemble & GetRuleEnsemble() const
{ return fRuleEnsemble; }
RuleEnsemble * GetRuleEnsemblePtr()
{ return &fRuleEnsemble; }
const RuleFitParams & GetRuleFitParams() const
{ return fRuleFitParams; }
RuleFitParams * GetRuleFitParamsPtr()
{ return &fRuleFitParams; }
const MethodRuleFit * GetMethodRuleFit() const
{ return fMethodRuleFit; }
const MethodBase * GetMethodBase() const
{ return fMethodBase; }
RuleFit( const RuleFit & other )
 copy constructor
void Copy(const TMVA::RuleFit& other)
 copy method