A++ » ROOSTATS » RooStats::NeymanConstruction

class RooStats::NeymanConstruction: public RooStats::IntervalCalculator

Function Members (Methods)

public:
virtual~NeymanConstruction()
voidAdditionalNToysFactor(double fact)
static TClass*Class()
virtual Double_tConfidenceLevel() const
voidCreateConfBelt(bool flag = true)
RooStats::ConfidenceBelt*GetConfidenceBelt()
virtual RooStats::PointSetInterval*GetInterval() const
RooStats::TestStatSampler*GetTestStatSampler()
RooStats::IntervalCalculatorRooStats::IntervalCalculator::IntervalCalculator()
RooStats::IntervalCalculatorRooStats::IntervalCalculator::IntervalCalculator(const RooStats::IntervalCalculator&)
virtual TClass*IsA() const
RooStats::NeymanConstructionNeymanConstruction(const RooStats::NeymanConstruction&)
RooStats::NeymanConstructionNeymanConstruction(RooAbsData& data, RooStats::ModelConfig& model)
RooStats::NeymanConstruction&operator=(const RooStats::NeymanConstruction&)
voidSaveBeltToFile(bool flag = true)
virtual voidSetConfidenceLevel(Double_t cl)
virtual voidSetData(RooAbsData& data)
voidSetLeftSideTailFraction(Double_t leftSideFraction = 0.)
virtual voidSetModel(const RooStats::ModelConfig& model)
virtual voidSetNuisanceParameters(const RooArgSet&)
voidSetParameterPointsToTest(RooAbsData& pointsToTest)
virtual voidSetParameters(const RooArgSet&)
virtual voidSetPdf(RooAbsPdf&)
virtual voidSetTestSize(Double_t size)
voidSetTestStatSampler(RooStats::TestStatSampler& sampler)
virtual voidShowMembers(TMemberInspector& insp) const
virtual Double_tSize() const
virtual voidStreamer(TBuffer&)
voidStreamerNVirtual(TBuffer& ClassDef_StreamerNVirtual_b)
voidUseAdaptiveSampling(bool flag = true)

Data Members

private:
boolfAdaptiveSamplingcontrols use of adaptive sampling algorithm
Double_tfAdditionalNToysFactorgive user ability to ask for more toys
RooStats::ConfidenceBelt*fConfBelt
boolfCreateBeltcontrols use if ConfidenceBelt should be saved to a TFile
RooAbsData&fData/ data set
Double_tfLeftSideFraction
RooStats::ModelConfig&fModel
RooAbsData*fPointsToTest
boolfSaveBeltToFilecontrols use if ConfidenceBelt should be saved to a TFile
Double_tfSize/ size of the test (eg. specified rate of Type I error)
RooStats::TestStatSampler*fTestStatSampler

Class Charts

Inheritance Chart:
RooStats::IntervalCalculator
RooStats::NeymanConstruction

Function documentation

NeymanConstruction(RooAbsData& data, RooStats::ModelConfig& model)
virtual ~NeymanConstruction()
PointSetInterval* GetInterval() const
 Main interface to get a ConfInterval (will be a PointSetInterval)
void SetTestStatSampler(RooStats::TestStatSampler& sampler)
 in addition to interface we also need:
 Set the TestStatSampler (eg. ToyMC or FFT, includes choice of TestStatistic)
{fTestStatSampler = &sampler;}
void SetLeftSideTailFraction(Double_t leftSideFraction = 0.)
 fLeftSideTailFraction*fSize defines lower edge of acceptance region.
 Unified limits use 0, central limits use 0.5,
 for upper/lower limits it is 0/1 depends on sign of test statistic w.r.t. parameter
{fLeftSideFraction = leftSideFraction;}
void SetParameterPointsToTest(RooAbsData& pointsToTest)
 User-defined set of points to test
Double_t Size() const
 This class can make regularly spaced scans based on range stored in RooRealVars.
 Choose number of steps for a rastor scan (common for each dimension)
      void SetNumSteps(Int_t);
 This class can make regularly spaced scans based on range stored in RooRealVars.
 Choose number of steps for a rastor scan (specific for each dimension)
      void SetNumSteps(std::map<RooAbsArg, Int_t>)
 Get the size of the test (eg. rate of Type I error)
{return fSize;}
Double_t ConfidenceLevel() const
 Get the Confidence level for the test
{return 1.-fSize;}
void SetModel(const RooStats::ModelConfig& model)
 Set ModelConfig
{fModel = model;}
void SetData(RooAbsData& data)
 Set the DataSet
{ fData = data; }
void SetPdf(RooAbsPdf& )
 Set the Pdf, add to the the workspace if not already there
void SetParameters(const RooArgSet& )
 specify the parameters of interest in the interval
void SetNuisanceParameters(const RooArgSet& )
 specify the nuisance parameters (eg. the rest of the parameters)
void SetTestSize(Double_t size)
 set the size of the test (rate of Type I error) ( Eg. 0.05 for a 95% Confidence Interval)
{fSize = size;}
void SetConfidenceLevel(Double_t cl)
 set the confidence level for the interval (eg. 0.95 for a 95% Confidence Interval)
{fSize = 1.-cl;}
ConfidenceBelt* GetConfidenceBelt()
 get confidence belt
{return fConfBelt;}
void UseAdaptiveSampling(bool flag = true)
 adaptive sampling algorithm to speed up interval caculation
void AdditionalNToysFactor(double fact)
 give user ability to ask for more toys
void SaveBeltToFile(bool flag = true)
 save teh confidence belt to a file
void CreateConfBelt(bool flag = true)
 should create confidence belt
{fCreateBelt = flag;}
TestStatSampler* GetTestStatSampler(void)
 Returns instance of TestStatSampler. Use to change properties of
 TestStatSampler, e.g. GetTestStatSampler.SetTestSize(Double_t size);
{ return fTestStatSampler; }