// @(#)root/tmva $Id$   
// Author: Andreas Hoecker, Peter Speckmayer, Joerg Stelzer, Helge Voss, Kai Voss, Eckhard von Toerne, Jan Therhaag
// Updated by: Omar Zapata, Lorenzo Moneta, Sergei Gleyzer

/**********************************************************************************
 * Project: TMVA - a Root-integrated toolkit for multivariate data analysis       *
 * Package: TMVA                                                                  *
 * Class  : Factory                                                               *
 * Web    : http://tmva.sourceforge.net                                           *
 *                                                                                *
 * Description:                                                                   *
 *      This is the main MVA steering class: it creates (books) all MVA methods,  *
 *      and guides them through the training, testing and evaluation phases.      *
 *                                                                                *
 * Authors (alphabetical):                                                        *
 *      Andreas Hoecker <Andreas.Hocker@cern.ch> - CERN, Switzerland              *
 *      Joerg Stelzer   <stelzer@cern.ch>        - DESY, Germany                  *
 *      Peter Speckmayer <peter.speckmayer@cern.ch> - CERN, Switzerland           *
 *      Jan Therhaag          <Jan.Therhaag@cern.ch>   - U of Bonn, Germany       *
 *      Eckhard v. Toerne     <evt@uni-bonn.de>        - U of Bonn, Germany       *
 *      Helge Voss      <Helge.Voss@cern.ch>     - MPI-K Heidelberg, Germany      *
 *      Kai Voss        <Kai.Voss@cern.ch>       - U. of Victoria, Canada         *
 *      Omar Zapata     <Omar.Zapata@cern.ch>    - UdeA/ITM Colombia              *
 *      Lorenzo Moneta  <Lorenzo.Moneta@cern.ch> - CERN, Switzerland              *
 *      Sergei Gleyzer  <Sergei.Gleyzer@cern.ch> - U of Florida & CERN            *
 *                                                                                *
 * Copyright (c) 2005-2011:                                                       *
 *      CERN, Switzerland                                                         *
 *      U. of Victoria, Canada                                                    *
 *      MPI-K Heidelberg, Germany                                                 *
 *      U. of Bonn, Germany                                                       *
 *      UdeA/ITM, Colombia                                                        *
 *      U. of Florida, USA                                                        *
 *                                                                                *
 * Redistribution and use in source and binary forms, with or without             *
 * modification, are permitted according to the terms listed in LICENSE           *
 * (http://tmva.sourceforge.net/LICENSE)                                          *
 **********************************************************************************/

#ifndef ROOT_TMVA_Factory
#define ROOT_TMVA_Factory

//////////////////////////////////////////////////////////////////////////
//                                                                      //
// Factory                                                              //
//                                                                      //
// This is the main MVA steering class: it creates all MVA methods,     //
// and guides them through the training, testing and evaluation         //
// phases                                                               //
//                                                                      //
//////////////////////////////////////////////////////////////////////////

#include <string>
#include <vector>
#include <map>
#ifndef ROOT_TCut
#include "TCut.h"
#endif

#ifndef ROOT_TMVA_Configurable
#include "TMVA/Configurable.h"
#endif
#ifndef ROOT_TMVA_Types
#include "TMVA/Types.h"
#endif
#ifndef ROOT_TMVA_DataSet
#include "TMVA/DataSet.h"
#endif

class TFile;
class TTree;
class TDirectory;
class TCanvas;
class TGraph;
class TH1F;
namespace TMVA {

   class IMethod;
   class MethodBase;
   class DataInputHandler;
   class DataSetInfo;
   class DataSetManager;
   class DataLoader;
   class VariableTransformBase;
   

   class Factory : public Configurable {
   public:

      typedef std::vector<IMethod*> MVector;
      std::map<TString,MVector*>  fMethodsMap;//all methods for every dataset with the same name

      // no default  constructor
      Factory( TString theJobName, TFile* theTargetFile, TString theOption = "" );

      // contructor to work without file
      Factory( TString theJobName, TString theOption = "" );

      // default destructor
      virtual ~Factory();

      virtual const char*  GetName() const { return "Factory"; }


      MethodBase* BookMethod( DataLoader *loader, TString theMethodName, TString methodTitle, TString theOption = "" );
      MethodBase* BookMethod( DataLoader *loader, Types::EMVA theMethod,  TString methodTitle, TString theOption = "" );
      MethodBase* BookMethod( DataLoader *, TMVA::Types::EMVA /*theMethod*/, 
                              TString /*methodTitle*/, 
                              TString /*methodOption*/, 
                              TMVA::Types::EMVA /*theComposite*/, 
                              TString /*compositeOption = ""*/ ) { return 0; } 

      // optimize all booked methods (well, if desired by the method)
      std::map<TString,Double_t> OptimizeAllMethods                 (TString fomType="ROCIntegral", TString fitType="FitGA");
      void OptimizeAllMethodsForClassification(TString fomType="ROCIntegral", TString fitType="FitGA") { OptimizeAllMethods(fomType,fitType); }
      void OptimizeAllMethodsForRegression    (TString fomType="ROCIntegral", TString fitType="FitGA") { OptimizeAllMethods(fomType,fitType); }

      // training for all booked methods
      void TrainAllMethods                 ();
      void TrainAllMethodsForClassification( void ) { TrainAllMethods(); }
      void TrainAllMethodsForRegression    ( void ) { TrainAllMethods(); }

      // testing
      void TestAllMethods();

      // performance evaluation
      void EvaluateAllMethods( void );
      void EvaluateAllVariables(DataLoader *loader, TString options = "" ); 
  
      TH1F* EvaluateImportance( DataLoader *loader,VIType vitype, Types::EMVA theMethod,  TString methodTitle, const char *theOption = "" );

      // delete all methods and reset the method vector
      void DeleteAllMethods( void );

      // accessors
      IMethod* GetMethod( const TString& datasetname, const TString& title )const;

      Bool_t Verbose( void ) const { return fVerbose; }
      void SetVerbose( Bool_t v=kTRUE );

      // make ROOT-independent C++ class for classifier response 
      // (classifier-specific implementation)
      // If no classifier name is given, help messages for all booked 
      // classifiers are printed
      virtual void MakeClass(const TString& datasetname , const TString& methodTitle = "" ) const;

      // prints classifier-specific hepl messages, dedicated to 
      // help with the optimisation and configuration options tuning.
      // If no classifier name is given, help messages for all booked 
      // classifiers are printed
      void PrintHelpMessage(const TString& datasetname , const TString& methodTitle = "" ) const;

      TDirectory* RootBaseDir() { return (TDirectory*)fgTargetFile; }

      Bool_t IsSilentFile();
      Bool_t IsModelPersistence();
      
      Double_t GetROCIntegral(DataLoader *loader,TString theMethodName);
      Double_t GetROCIntegral(TString  datasetname,TString theMethodName);

      //methods to get TGraph for a indicate method in dataset
      //optional tiitle and axis added with fLegend=kTRUE
      TGraph* GetROCCurve(DataLoader *loader,TString theMethodName,Bool_t fLegend=kTRUE);
      TGraph* GetROCCurve(TString  datasetname,TString theMethodName,Bool_t fLegend=kTRUE);
      
      // Draw all ROC curves for all methods in the dataset.
      TCanvas* GetROCCurve(DataLoader *loader);
      TCanvas* GetROCCurve(TString datasetname);

   private:

      // the beautiful greeting message
      void Greetings();
      
      //evaluate the simple case that is removing 1 variable at time
      TH1F* EvaluateImportanceShort( DataLoader *loader,Types::EMVA theMethod,  TString methodTitle, const char *theOption = "" );
      //evaluate all variables combinations
      TH1F* EvaluateImportanceAll( DataLoader *loader,Types::EMVA theMethod,  TString methodTitle, const char *theOption = "" );
      //evaluate randomly given a number of seeds
      TH1F* EvaluateImportanceRandom( DataLoader *loader,UInt_t nseeds, Types::EMVA theMethod,  TString methodTitle, const char *theOption = "" );
      
      TH1F* GetImportance(const int nbits,std::vector<Double_t> importances,std::vector<TString> varNames);
      
      void WriteDataInformation(DataSetInfo&     fDataSetInfo);

      void SetInputTreesFromEventAssignTrees();

   private:

      // data members

      TFile*                             fgTargetFile;     //! ROOT output file


      std::vector<TMVA::VariableTransformBase*> fDefaultTrfs;     //! list of transformations on default DataSet

      // cd to local directory
      TString                                   fOptions;         //! option string given by construction (presently only "V")
      TString                                   fTransformations; //! List of transformations to test
      Bool_t                                    fVerbose;         //! verbose mode
      Bool_t                                    fCorrelations;    //! enable to calculate corelations
      Bool_t                                    fROC;             //! enable to calculate ROC values
      Bool_t                                    fSilentFile;      //! used in contructor wihtout file 

      TString                                   fJobName;         //! jobname, used as extension in weight file names

      Types::EAnalysisType                      fAnalysisType;    //! the training type
      Bool_t                                    fModelPersistence;//!option to save the trained model in xml file or using serialization
      
      
   protected:

      ClassDef(Factory,0);  // The factory creates all MVA methods, and performs their training and testing
   };

} // namespace TMVA

#endif

 Factory.h:1
 Factory.h:2
 Factory.h:3
 Factory.h:4
 Factory.h:5
 Factory.h:6
 Factory.h:7
 Factory.h:8
 Factory.h:9
 Factory.h:10
 Factory.h:11
 Factory.h:12
 Factory.h:13
 Factory.h:14
 Factory.h:15
 Factory.h:16
 Factory.h:17
 Factory.h:18
 Factory.h:19
 Factory.h:20
 Factory.h:21
 Factory.h:22
 Factory.h:23
 Factory.h:24
 Factory.h:25
 Factory.h:26
 Factory.h:27
 Factory.h:28
 Factory.h:29
 Factory.h:30
 Factory.h:31
 Factory.h:32
 Factory.h:33
 Factory.h:34
 Factory.h:35
 Factory.h:36
 Factory.h:37
 Factory.h:38
 Factory.h:39
 Factory.h:40
 Factory.h:41
 Factory.h:42
 Factory.h:43
 Factory.h:44
 Factory.h:45
 Factory.h:46
 Factory.h:47
 Factory.h:48
 Factory.h:49
 Factory.h:50
 Factory.h:51
 Factory.h:52
 Factory.h:53
 Factory.h:54
 Factory.h:55
 Factory.h:56
 Factory.h:57
 Factory.h:58
 Factory.h:59
 Factory.h:60
 Factory.h:61
 Factory.h:62
 Factory.h:63
 Factory.h:64
 Factory.h:65
 Factory.h:66
 Factory.h:67
 Factory.h:68
 Factory.h:69
 Factory.h:70
 Factory.h:71
 Factory.h:72
 Factory.h:73
 Factory.h:74
 Factory.h:75
 Factory.h:76
 Factory.h:77
 Factory.h:78
 Factory.h:79
 Factory.h:80
 Factory.h:81
 Factory.h:82
 Factory.h:83
 Factory.h:84
 Factory.h:85
 Factory.h:86
 Factory.h:87
 Factory.h:88
 Factory.h:89
 Factory.h:90
 Factory.h:91
 Factory.h:92
 Factory.h:93
 Factory.h:94
 Factory.h:95
 Factory.h:96
 Factory.h:97
 Factory.h:98
 Factory.h:99
 Factory.h:100
 Factory.h:101
 Factory.h:102
 Factory.h:103
 Factory.h:104
 Factory.h:105
 Factory.h:106
 Factory.h:107
 Factory.h:108
 Factory.h:109
 Factory.h:110
 Factory.h:111
 Factory.h:112
 Factory.h:113
 Factory.h:114
 Factory.h:115
 Factory.h:116
 Factory.h:117
 Factory.h:118
 Factory.h:119
 Factory.h:120
 Factory.h:121
 Factory.h:122
 Factory.h:123
 Factory.h:124
 Factory.h:125
 Factory.h:126
 Factory.h:127
 Factory.h:128
 Factory.h:129
 Factory.h:130
 Factory.h:131
 Factory.h:132
 Factory.h:133
 Factory.h:134
 Factory.h:135
 Factory.h:136
 Factory.h:137
 Factory.h:138
 Factory.h:139
 Factory.h:140
 Factory.h:141
 Factory.h:142
 Factory.h:143
 Factory.h:144
 Factory.h:145
 Factory.h:146
 Factory.h:147
 Factory.h:148
 Factory.h:149
 Factory.h:150
 Factory.h:151
 Factory.h:152
 Factory.h:153
 Factory.h:154
 Factory.h:155
 Factory.h:156
 Factory.h:157
 Factory.h:158
 Factory.h:159
 Factory.h:160
 Factory.h:161
 Factory.h:162
 Factory.h:163
 Factory.h:164
 Factory.h:165
 Factory.h:166
 Factory.h:167
 Factory.h:168
 Factory.h:169
 Factory.h:170
 Factory.h:171
 Factory.h:172
 Factory.h:173
 Factory.h:174
 Factory.h:175
 Factory.h:176
 Factory.h:177
 Factory.h:178
 Factory.h:179
 Factory.h:180
 Factory.h:181
 Factory.h:182
 Factory.h:183
 Factory.h:184
 Factory.h:185
 Factory.h:186
 Factory.h:187
 Factory.h:188
 Factory.h:189
 Factory.h:190
 Factory.h:191
 Factory.h:192
 Factory.h:193
 Factory.h:194
 Factory.h:195
 Factory.h:196
 Factory.h:197
 Factory.h:198
 Factory.h:199
 Factory.h:200
 Factory.h:201
 Factory.h:202
 Factory.h:203
 Factory.h:204
 Factory.h:205
 Factory.h:206
 Factory.h:207
 Factory.h:208
 Factory.h:209
 Factory.h:210
 Factory.h:211
 Factory.h:212
 Factory.h:213
 Factory.h:214
 Factory.h:215
 Factory.h:216
 Factory.h:217
 Factory.h:218
 Factory.h:219